Dirección

Zapopan, Jalisco, México

Celular/Whatsapp

332-832-0717 y 331-830-8731

Correo electrónico

contacto@agroproductores.com

Horarios de atención

9:00 hrs - 18:00 hrs.

AGROPRODUCTORES

Evaluamos las condiciones agro-ecológicas de tu zona y recomendamos un manejo integrado para los cultivos.

Archivo de categoría Fertilizantes

Fosfato monoamónico

El fosfato monoamónico (MAP), es un fertilizante soluble en agua y a la vez una fuente eficiente de fósforo (P) y nitrógeno (N) para las plantas; posee el más alto contenido de fósforo (P) entre los fertilizantes sólidos comunes.

¿Cómo se produce el fosfato monoamónico?

El proceso de fabricación de este fertilizante puede realizarse mediante distintos métodos. En un método común, se hace reaccionar una relación de uno a uno de amoníaco (NH3) y ácido fosfórico (H3PO4) y posteriormente, la pasta resultante de MAP se solidifica en un granulador. Otro método consiste en introducir los dos compuestos iniciales en un reactor de tubos, la reacción generada produce calor para evaporar agua y solidificar el MAP. Una de las ventajas de la producción de MAP es que puede utilizarse el ácido fosfórico de menor calidad comparado con otros fertilizantes fosforados que suelen requerir un grado de pureza mayor del ácido.

Fosfato monoamónico
IPNI, Fuentes de Nutrientes Espescíficos

Propiedades químicas

Fórmula química: NH4H2PO4

Contenido de N: 10 a 12%

Contenido de P2O5: 48 a 61%

Solubilidad en agua (20 ºC): 370 g/L

pH solución: 4 a 4.5

Uso del fosfato monoamónico en la agricultura

El MAP tiene alta solubilidad y se disuelve fácilmente en el suelo si este presenta una humedad adecuada. Después de la disolución, los dos componentes básicos de este fertilizante se separan liberando amonio y ortofosfato, compuestos que favorecen el crecimiento saludable de la planta. El pH de la solución es moderadamente ácido, haciendo al MAP un fertilizante importante para suelos con pH neutros y alcalinos.

El MAP granulado es aplicado en bandas, cerca a las raíces en crecimiento. Su presentación en polvo es mayormente utilizado en fertilizantes en suspensión. Si el MAP se fabrica con ácido fosfórico puro, puede utilizarse como fertilizante foliar o incluso ser agregado al agua de riego.

Prácticas de manejo

La ligera acidificación asociada a este fertilizante reduce el potencial de pérdida de NH3. hacia la atmósfera. El MAP puede ser colocado cerca de las semillas sin que se provoque ningún daño a estas, por NH3. La aplicación en bandas del MAP protege al P de que se fije en el suelo y así mismo facilita un sinergismo entre el amonio y el fosfato en su toma por las raíces.

Cuando se utiliza al fosfato monoamónico como fertilizante foliar o cuando ese añade al agua de riego, no debe ser mezclado con fertilizantes de calcio o magnesio. Es conocido que el fosfato monoamónico posee buenas propiedades de almacenaje y manipulación. El MAP de alta pureza podría requerir el agregado de acondicionadores (como hierro o aluminio) o de manipulación especial para prevenir la aglutinación y el apelmazamiento.

Amoniaco

El amoniaco (NH3) ha sido el primer compuesto usado en la industria de fertilizantes nitrogenados. Puede ser aplicado directamente al suelo como nutriente vegetal, o bien, convertido en una variedad de fertilizantes nitrogenados. El amoniaco requiere de precauciones especiales de seguridad y manejo.  

¿Cómo se produce el amoniaco?

A principios de 1900, fue desarrollado el proceso de Haber-Bosch, que consiste en combinar nitrógeno (N2) e hidrógeno (H2) bajo condiciones de alta temperatura y presión.

Amoniaco
IPNI, Fuentes de Nutrición Específica

La mayor parte de la producción de amoniaco (NH3) se lleva a cabo en lugares donde hay una disponibilidad inmediata de gas natural.

La forma del NH3 en la atmosfera es en gas, pero se transporta en estado líquido mediante la compresión o refrigeración por debajo de su punto de ebullición (-33°C). Es transportado en barcos refrigerados, vagones de ferrocarril presurizados, y tuberías de larga distancia.

Propiedades químicas del amoniaco

Amoníaco anhidro (NH3)

Contenido de N: 82% N

Punto de ebullición: -33 ºC

Hidróxido de Amonio (NH4OH)

Contenido de N: 20 a 24% N

pH: 11 a 12

Usos en la agricultura

El amoniaco posee el mayor contenido de nitrógeno de todos los fertilizantes comerciales, esto lo hace una fuente popular de N, sin embargo, posee un peligro potencial y su uso requiere prácticas de seguridad. El NH3 se aplica directamente al suelo en forma líquida e inmediatamente se convierte en vapor; es aplicado de 10 a 20 cm de profundidad del suelo para prevenir que el vapor se pierda hacia la atmósfera.

Este fertilizante frecuentemente se disuelve en agua para producir hidróxido de amonio, también conocido como amoniaco acuoso, un popular fertilizante líquido que no necesita ser inyectado a tanta profundidad como el NH3, lo cual provee beneficios para la aplicación a campo y no requiere de tantas medidas de seguridad.

Prácticas de manejo

La aplicación de NH3 debe de ser bajo una cuidadosa supervisión y es de suma importancia la utilización de equipos adecuados de protección personal, ya que, debido a la solubilidad del NH3, este reacciona rápidamente a la humedad del cuerpo como los pulmones y ojos, causando daños severos.

Para evitar daños durante la germinación, es importante que las semillas no sean colocadas cerca de la zona de aplicación de NH3. Los escapes de amoniaco hacia la atmosfera deben ser evitados lo más que se pueda. Además, la alta concentración de NH3 en el agua superficial, puede ser perjudicial para los organismos acuáticos.

Fertilizante Nitrogenado: Sulfato de amonio

El sulfato de amonio es un fertilizante nitrogenado que además de nitrógeno (N) aporta azufre (S). El sulfato de amonio contiene un 21% de nitrógeno en forma de amonio y un 24% de azufre en forma de sulfatos.

El sulfato de amonio puede encontrarse en el mercado en forma granular para aplicación directa al suelo, o en forma soluble, para su uso en fertirrigación.

Sulfato de amonio
IPNI, Fuentes de Nutrientes Específicos

¿Cómo se produce el sulfato de amonio?

El fertilizante nitrogenado: sulfato de amonio (SA o SAM) está hecho a partir de una reacción de ácido sulfúrico y amoniaco caliente. Esta reacción produce cristales y cuando estos alcanzan el tamaño deseado, pasan a un proceso de secado y tamizado en tamaños de partículas específicos.

La mayor parte de la producción del fertilizante: Sulfato de Amonio se debe a la fabricación de subproductos de varias industrias. El sulfato de amonio , es coproducto principal del proceso de fabricación del nylon. Sin embargo, diversos subproductos que contienen amoníaco o utilizan ácido sulfúrico son comúnmente transformados en sulfato de amonio para uso agrícola.

Descripción química del sulfato de amonio

Fórmula química: (NH4)2SO4

Contenido de N: 21%

Contenido de S: 24%

Solubilidad en agua: 750 g/L

pH en solución: 5 a 6

Usos del fertilizante sulfato de amonio en la agricultura

El SA es utilizado principalmente en cultivos donde se necesite adicionar nitrógeno (N) y azufre (S) para satisfacer los requerimientos nutricionales de la planta. También es bien sabido que el SA provee de una excelente fuente de azufre que además de facilitar la síntesis de proteínas en las plantas, tiene numerosos beneficios en ellas.

El SA se utiliza frecuentemente en suelos anegados para la producción de arroz, donde los fertilizantes a base de nitrato no son una opción viable debido a las pérdidas por desnitrificación. Además, si se adiciona SA a una solución herbicida, mejora la eficacia en el control de malezas y es aún más efectiva cuando el agua utilizada contiene altas concentraciones de calcio, magnesio o sodio.

Prácticas de manejo del sulfato de amonio como fuente de N en la agricultura

Después de aplicar el Sulfato de Amonio en el suelo, este se disuelve rápidamente en sus componentes (amonio y sulfato). En condiciones alcalinas y si el amonio permanece en la superficie del suelo, puede ser susceptible a pérdidas gaseosas. En este tipo de escenarios, se recomienda que el sulfato de amonio se incorpore al suelo, y realizar la aplicación previamente a un riego para asegurar humedad en la rizosfera y disminuir las perdidas por volatiliación.

¿Qué acciones podemos hacer para que la agricultura sea sostenible?

¿Qué acciones podemos hacer para que la agricultura sea sostenible?

La agricultura sostenible se define como aquella en la que la producción agrícola es compatible con los recursos del medio. De esta manera se busca asegurar rendimiento y calidad mediante una agricultura sostenible a lo largo del tiempo.

¿Qué acciones podemos hacer para que la agricultura sea sostenible?

Actualmente se están desarrollando metodologías que permitan evaluar el impacto que ciertos procesos y acciones tienen en el medio ambiente. Una de las formas de evaluar este impacto es la huella hídrica. La huella hídrica es una metodología que permite conocer cuantos litros de agua gasta determinado proceso o acción para llevarse a cabo.

De esta manera podemos evaluar que productos o acciones tienen un gasto elevado di agua y considerar si el valor generado es mayo al valor del agua en sí.

Un agricultura sostenible requiere investigación y desarrollo

Definitivamente se deben destinar recursos para implementar metodologías que permiten generar y capturar datos e información que sirvan en la toma de decisiones. Actualmente se están desarrollando un sinfín de nuevas tecnologías que buscan una agricultura eficiente con menos impacto ambiental.

Pulgones
El control biológico de plagas es una importante herramienta para una agricultura más sostenible

Es importante que estas tecnologías se regionalicen y se adecuan a las necesidades particulares de cada zona, esta sin duda es una de las acciones que podemos hacer para que la agricultura sea sostenible.

Implementar tecnologías que permitan reducir la carga de moléculas que pueden dañar el medio ambiente derivado del uso de productos de protección de cultivo. Es importante diseñar planes de control biológico que permitan disminuir las cantidades de plaguicidas utilizados, en busca de una agricultura sostenible.

Las tecnologías de distribución de agua son importantes. Se debe bucar incrementar la eficiencia del agua tendrán un impacto muy positivo en la sostenibilidad de la agricultura intensiva moderna. El uso de sistemas de riego, de programas de nutrición vegetal basados en las necesidades de la planta y el aporte mineral del agua usada serán acciones que permitan una agricultura más sostenible.

El reto es grande y la población sigue incrementando con la demanda de alimentos también. Es necesario buscar tecnologías que nos permitan una agricultura sostenible a lo largo del tiempo.

 Mi mitigar los efectos negativos que algunos procesos actuales están provocando al medio ambiente es necesario para garantizar un mundo feliz para nuestros hijos.

Laboratorios para análisis foliar

Laboratorios y análisis agrícolas en México

Laboratorios agrícolas en México

Los laboratorios agrícolas ofrecen servicios como: análisis de agua, análisis de solución nutritiva, análisis de solución madre, análisis de suelo, análisis de extracto de pasta saturada, análisis de raíz para determinar reservas, y muchos más.

Laboratorios agrícolas en México

En México existen muchas opciones de laboratorios agrícolas privados como institucionales pertenecientes a universidades o centros de investigación.

En la mayoría de ellos, cuando no están cerca de la producción agrícola las muestras se pueden enviar a través de paquetería para su análisis. Antes de realizar cualquier análisis agrícola es recomendable hablar con el laboratorio para que se indique el método de muestreo y los requerimientos especiales para el envío de la muestra.

En la química agrícola se usan diversas unidades de medición, como son partes por millón (ppm), miliequivalntes (meq), porcentaje peso/peso, porcentaje peso/volumen y muchas otras más, por lo que es necesario solicitar que los valores se expresen un unidades que sepamos analizar.

Análisis foliar

Análisis de agua

Estos análisis tienen la finalidad de brindar información sobre el contenido mineral y orgánico del agua de riego. Los parámetros en este análisis son indicadores para conocer lo que se denomina calidad del agua. Esta información permite tomar decisiones en la dosificación de fertilizantes, uso de acondicionadores de agua (ácidos), entre otros, alguicidas, etc.

En algunos laboratorios agrícolas este análisis se divide en dos, el de contenido de minerales que determina exclusivamente minerales y otro de microrganismos para determinar la microbiota del agua.

Para tomar un análisis de agua es necesario sumergir un recipiente hasta la parte media del cuerpo de agua. Es importante no tomar la muestra de la parte superior del cuerpo de agua, ni de la parte inferior por que la muestra puede no ser representativa. Es importante confirmar con el laboratorio la metodología de muestreo.

Análisis de solución nutritiva

El análisis de solución nutritiva permite conocer el contenido de nutrientes/fertilizantes disponibles para ser absorbidos por las raíces. Es muy utilizado en la hidroponía y el fertirriego para tomar decisiones en la dosificación de fertilizantes.

Las muestras para un análisis de solución nutritiva suelen tomarse en gotero, pues de esta manera conocemos los nutrientes que están saliendo a través del sistema de riego.

Análisis de agua, solución madre y solución nutritiva

Análisis de solución madre

El análisis de solución madre permite conocer el contenido de nutrientes/fertilizantes en el tanque con la concentración de fertilizantes. Permite identificar los nutrientes en el tanque concentrado para calcular la dosificación a diluir en el agua de riego para obtener la solución nutritiva que cae en gotero. Es muy utilizado en la hidroponía y el fertirriego para tomar decisiones en la dosificación de fertilizantes.

La muestra para realizar el análisis de solución madre suele tomarse de los tanques de concentración para determinar que el contenido nutrimental sea el buscado.

Análisis de suelo

El análisis de suelo permite conocer el estado del suelo, brinda valores importantes como densidad real, densidad aparente, capacidad de campo, tipo de suelo, contenido por granulometría, contenido de caliza, contenido de materia orgánica.

No es bueno para determinar nutrientes disponibles para que las plantas las absorban por el tipo de metodología utilizado en la determinación. Para calcular la cantidad de nutrientes disponibles para la planta se recomienda el extracto de pasta saturado.

La muestra para un análisis de suelo debe ser representativa de la parcela a evaluar, se recomienda una muestra compuestas de al menos 25 submuestras por hectárea.

Extracto de pasta saturada

Este análisis proviene de la solución formada entre suelo y agua, es decir se analiza la parte soluble del suelo, también denominada solución del suelo. Este análisis permite conocer la cantidad de nutrientes disueltos en el agua del suelo y por lo tanto disponibles para ser absorbidos con las plantas.

La muestra corresponde al suelo que debe ser representativa de la parcela a analizar, se recomienda una muestra compuesta de almenos 25 submuestras por hectarea.

Análisis de fertilizantes

Permite conocer la concentración de nutrientes y elementos en los fertilizantes, pude realizarse en fertilizantes líquidos o sólidos, en fertilizantes orgánicos y fertilizantes minerales. El valor se puede expresar en porcentaje peso/peso, porcentaje peso/volumen, gramos por litro, gramos por kilogramo, etc.

La muestra de un análisis de fertilizantes es el fertilizante en a analizar completamente sellado.

Análisis de arginina en raíces o ramas

El análisis de arginina en raíces permite conocer las reservas de nitrógeno de los cultivos con un periodo de dormancia, como; vid, durazno, nogal, entre otros. Estas reservas son importantes porque son utilizadas durante la brotación del próximo ciclo.

Análisis almidón en raíces o ramas

El análisis de almidón en raíces o ramas permite conocer las reservas de carbohidratos en arboles con periodo de dormancia. Estas reservas son importantes por que son utilizadas durante la brotación del próximo ciclo.

Análisis de contenido de metales pesados

El análisis de metales pesado permite conocer si una muestra liquida o solida contiene algún metal pesado y que cantidad. Incluye las referencias permitidas según el tipo de metal.

Análisis de microorganismos benéficos

Este análisis muestra los microorganismos que están habitando la muestra analizada. Es útil para evaluar la colonización de microorganismos benéficos en suelos y sustratos. Este tipo de análisis puede determinar microorganismos benéficos o patógenos.

Análisis en laboratorios agrícolas de México

Análisis de límites máximos de residualidad

Estos análisis permiten determinar si existen moléculas de determinada clase en la planta. Es muy importante para asegurarse que las moléculas utilizadas en protección de cultivos no revesen el límite máximo de residualidad establecido.

Análisis de contenido de solidos solubles totales (°Brix)

Este tipo de análisis es muy utilizado para determinar el contenido de azúcares en fruta. Este análisis contiene información como el contenido de solidos solubles totales expresado como °brix, y el contenido de diferentes azúcares como fructuosa, glucosa, sacarosa, etc.

Análisis foliar

El análisis foliar permite conocer el estado nutricional de la planta al proporcionar el contenido y concentración de los diferentes nutrientes necesarios para el correcto desarrollo de la planta.

Para conocer el estado de la planta se tienen referencias de concentración foliar bibliográficas o mejor aún se realiza un historial periódico con una muestra representativa de plantas.

Análisis de fitopatogenos

El análisis de fitopatogenos determina que tipo de bacteria, hongo, virus, micoplasma o microorganismo esta provocando un daño ya identificado en el cultivo.

Análisis de aminoácidos libres y no libres

El análisis de aminoácidos libres determina la cantidad de aminoácidos libres presentes en una muestra. También puede determinar que aminoácidos y en que cantidad están presentes.

Este análisis también incluye el contenido de aminoácidos no libres, que nunca es menor al de aminoácidos libres.

La mayoría de laboratorios solo ofrecen el conteo de los 20 aminoácidos esenciales y es muy difícil y caro encontrar laboratorios que ofrezcan la determinación de un amplio aminograma de aminoácidos vegetales.

Lista de laboratorios agrícolas en México

Universidad Chapingo

AGQ labs

Phytomonitor

Fertilab

CIATEJ

FYPA

Quimia

SGS

Universidad Antonio Narro

ICAMEX

Masterlab

Cesavep

Universidad de Guadalajara

ECOSUR

EUROFINS

Análisis foliar

Fertilizantes nitrogenados

Los fertilizantes nitrogenados pueden clasificarse en tres formas: nitrógeno ureico, nitrógeno amoniacal y nitrógeno nítrico.

El nitrógeno es un elemento esencial para el correcto desarrollo fisiológico de las plantas. Pertenece al grupo de nutrientes denominados macronutrientes, debido a que es consumido en abundantes cantidades durante su desarrollo.

El nitrógeno es un constituyente estructural de muchas enzimas en las plantas, forma parte de los aminoácidos, proteínas, enzimas, clorofila, entre muchos otros. Fertilizantes nitrogenados: Nitrógeno necesario para la clorofila

Nitrógeno – Urea (-COO(NH2)2

La molécula de urea no posee carga eléctrica. Cuando la urea entra en contacto con el suelo rápidamente se transforma en amonio (NH4+) y dióxido de carbono (CO2). Esto regularmente toma de 24 a 48 horas. En la transformación de la urea a amonio y dióxido de carbono interviene una enzima denominada ureasa, que está presente en casi todos los suelos.

La interacción del amonio derivado de la urea con el agua provoca la formación de hidróxido de amonio, lo que disminuye el pH en un área localizada.

Cuando el nitrógeno se aporta así a la producción agrícola existe una alta perdida de nitrógeno por volatilización. Los factores que influyen en la volatilización son la CIC, el pH del suelo, contenido de bicarbonatos y la humedad del suelo.

Nitrógeno – Amoniacal (NH4+)

El amonio es una molécula con carga positiva (catión), lo que significa que es retenido en el suelo por las arcillas de carga negativa. Otros nutrientes con carga positiva como el calcio (Ca) y magnesio (Mg) también son retenidos por arcillas de carga negativa.

El amonio puede desplazar al calcio y en menor medida al magnesio del complejo de cambio. En pocos días el amonio (NH4+) es oxidado por las bacterias del suelo y transformado a nitrato (NO3)

El amonio es toxico para las plantas en grandes cantidades, algunas especies son más susceptibles que otras, por lo que este factor nunca debe pasarse por alto.

Algunos fertilizantes nitrogenados con nitrógeno amoniacal con: nitrato de amonio y fosfato de amonio.

Nitrógeno – Nitrato (NO3)

Fertilizantes nitrogenados de larga duraciónEl nitrato posee una carga negativa (anión), por este motivo no puede unirse a las partículas de arcilla como el amonio. El amonio tiene un gran poder oxidativo, por lo que reacciona fácilmente con nutrientes como el hierro.

Los microorganismos del suelo aprovechan el oxígeno del nitrato para respirar, y con ello provocan una disminución de oxígeno en el área radicular, pudiéndose provocar desnitrificación de los suelos.

Algunos fertilizantes nitrogenados con nitrógeno en forma de nitratos son: nitrato de amonio, nitrato de potasio, nitrato de calcio, nitrato de magnesio, entre otros.

¿Qué tipo de nitrógeno debo aplicar a mi cultivo?

Pudrición apical desbalance Ca

Los aplicaciones excesivas de fuentes amoniacales durante el desarrollo del fruto puede provocar desbalances nutricionales del calcio.

En esta decisión tienen que considerase factores como tipo de cultivo, edad del cultivo, clima de la región, tipos de suelos, disponibilidad de agua, así como de fertilizantes.

Se debe de considerar la susceptibilidad del cultivo al amonio.

Cuando se usa amonio como fuente de nitrógeno, las cantidades de magnesio (Mg) y calcio (Ca) en la planta ser reducen, y se observan concentraciones más altas de estos mismos elementos cuando la fuente es nitrato.

Eso indica que es preferible utilizar fuentes amoniacales de nitrógeno durante el desarrollo vegetativo de la planta y utilizar fuentes nítricas o nitrógeno en forma de nitrato para la etapa de desarrollo de frutos.

Especialmente en cultivos como tomate y pimiento, en donde desbalances nutricionales en el calcio, provocados por el nitrógeno amoniacal provocan la fisiopatia conocida como pudrición apical o blossom end rot (BER).

 

Función del magnesio en las plantas

Una de las principales funciones que el magnesio tiene en las plantas, es la de ser un elemento estructural de la clorofila. El magnesio ocupa el lugar central de la molécula de clorofila, molécula que da el color verde característico de las plantas.. En ausencia de magnesio la clorofila no puede sintetizarse, lo que afecta el proceso fotosintético de la planta.

El magnesio es un activador enzimático, participa como cofactor en un gran numero de reacciones enzimáticas del metabolismo de las plantas.

La biosíntesis de la clorofila requiere de la incorporación de un magnesio en la molécula de clorofila. Todo el proceso de síntesis de clorofila es activada por una enzima dependiente del calcio.

El magnesio es componente estructural de los ribosomas. Es en los ribosomas donde comienza la síntesis de proteínas, por lo que el magnesio influye en la síntesis de proteínas. Las proteínas pueden ser estructurales o catalizadores de reacciones químicas.

El magnesio participa en los procesos de transferencia de energía, su función es activar la catálisis de diversos procesos, por lo que su deficiencia afecta el desempeño energético de la planta.El magnesio en las plantas forma parte de la clorofila, esta molécula que da el color verde a las plantas.

En nutrición vegetal el magnesio se clasifica como un macronutriente secundario, debido a que es absorbido en cantidades importantes por la planta.

Absorción del magnesio por las plantas

Este nutriente es acumulado y absorbido por las plantas en cantidades parecidas al del fósforo y azufre. Mientras que menores a calcio y potasio.

El magnesio es absorbido por la planta en forma de ion Mg+2. Siempre se debe de tomar en cuenta que los nutrientes con carga positiva como el calcio, magnesio, potasio, sodio, compiten entre si para ser absorbidos por la planta. Por este motivo siempre se debe cuidar el balance entre cationes.

Deficiencias de magnesio

Los intervalos de suficiencia de magnesio en hojas, hablando de manera general, es de 1 – 4 gramos por cada kilogramo de materia seca.

Absorción del magnesio en las plantasLos síntomas de deficiencias de magnesio (Mg) se presentan en valores inferiores a 1 gramo por cada kilogramo de materia seca.

Provoca una reducción del rendimiento y de la calidad, debido a que se reduce la cantidad de clorofila en la planta y con ello la actividad fotosintética. Reduciendo así la energía disponible para que la planta florezca y haga que sus frutos crezcan y se desarrollen.

Los principales síntomas de deficiencia de magnesio son amarillamiento o clorosis intervenal en hojas viejas o ubicadas en la parte intermedia de la planta.

Este amarillamiento se debe a que la clorofila no se puede biosintetizar debido a que el magnesio que debe insertarse en la molécula de clorofila no existe.

Con temperaturas muy bajas, se suelen presentar deficiencias de magnesio en producciones con sistema hidropónico, aun cuando los niveles de magnesio sean los adecuados en la solución nutritiva. Esto por la pérdida de raíces que suele suceder en esta época.

¿Qué provoca la deficiencia de magnesio en las plantas?

Magnesio en el sueloEl magnesio es absorbido del suelo a través de las raíces. Para que esto suceda el magnesio tiene que estar disuelto en el agua presente en el suelo, lo que se conoce como solución del suelo.

El efecto del pH  del suelo sobre la disponibilidad del magnesio es sumamente importante, y debe de considerarse siempre en los análisis nutricionales. Cuando se encuentra fuera de los valores 5.5-6.5 el magnesio (Mg) puede volverse insoluble, afectándose de esta manera su absorción por la planta.

La disponibilidad y absorción del magnesio

El magnesio también puede convertirse en insoluble cuando existen concentraciones altas de nitratos y fosfatos.

Se deben cuidar la relación entre la cantidad de iones de calcio (Ca), potasio (K) y magnesio (Mg), porque un desequilibrio entre ellos puede provocar alteraciones en la absorción de los mismos.

En suelos calcáreos y salino sódicos, es más común que se den deficiencias de magnesio por el desequilibrio iónico que presentan estos suelos.

¿Cómo corregir una deficiencia de magnesio (Mg)?

Existen diferentes fertilizantes que pueden ser utilizados como fuente de magnesio, entre ellos está el sulfato de magnesio, nitrato de magnesio y quelato de magnesio.

Las concentraciones de magnesio que se deben buscar para corregir deficiencias son de 15-25 ppm, esto es un valor general y cambiará según el tipo de cultivo, edad, entre otras cosas.

Para complementar la corrección de deficiencias de magnesio se pueden usar aplicaciones foliares de magnesio. Las aplicaciones se pueden hacer en conjunto con activos que mejoren e incrementen su absorción como: aminoácidos con, lignosulfonatos, quelatos, ácidos orgánicos, ácidos fúlvicos, entre otros más disponibles en el mercado.

 

 

 

 

 

 

Correción del pH del suelo

Los suelos con pH ácido pueden ser corregidos mediante las enmiendas o encalados a base de cal viva (CaO), cal apagada ((OH2Ca)), caliza (CO3Ca), dolominta (CO3)2CaMg) .

Mientras que la aplicación de yeso y azufre puede usarse para la corrección del pH del suelo alcalino. Los encalados son necesarios cuando el pH es menor de 5, con esto se sustituyen los cationes de hidrogeno por cationes de calcio y se consigue elevar el pH del suelo.

En producciones agrícolas con fertirriego es común la aplicación de ácidos como el sulfúrico, nítrico y sulfúrico para obtener pH ligeramente ácidos que benefician la absorción de nutrientes.

Es importante conocer la reacción de los fertilizantes con el suelo, algunos fertilizantes disminuyen el pH mientras que otros lo incrementan, deben de usarse fertilizantes que ayuden a obtener el pH óptimo para cada cultivo según las características del suelo.

Por ejemplo el sulfato de amonio tiene una reacción acidificante, y el nitrato de calcio y los fasfatos elevan el pH del suelo. La corrección del pH del suelo puede llevarse a cabo mediante el correcto uso de fertilizantes según sea su reacción en el suelo.

El pH del suelo tiene gran relación con la capacidad de intercambio catiónico del suelo, y con ello con la fertilidad del mismo. El pH obtiene para los cultivos oscila entre 5.5-7.

Un buen contenido de materia orgánica ayuda a amortiguar cambios bruscos en el pH del suelo. Cuando los suelos son pobres en materia orgánica y reciben aportes de fertilizantes que bajan o sube el pH el efecto sobre el suelo es directo y no posee la capacidad de amortiguar el pH, como si lo haria un suelo con materia orgánica por arriba de 2.5%.

Es adecuado realizar análisis de suelos periódicamente, que te permitan conocer el estado del pH y de materia orgánica para realizar cálculos sobre la cantidad y tipo de producto a aplicar, ya sea que se busque bajar o incrementar el pH para llegar a valores óptimos.

Nutrientes del suelo

Además de servir como sostén para las plantas, el suelo es fuente de nutrientes indispensables para el crecimiento y desarrollo de las plantas.

En suelos con buena fertilidad las raíces encuentran con facilidad los elementos nutritivos presentes en el suelo.

El suelo no es una fuente inagotable de nutrientes para las plantas, en suelos que se produce un único cultivo por varios años, se disminuye la cantidad de nutrientes. Es adecuado cuando se realiza una producción intensiva agregar nutrientes al suelo a través de fertilizantes.

EL agotamiento del suelo provoca una disminución de los rendimientos, deficiencias nutricionales, disminución de la actividad microbiana, perdida de la estructura del suelo.

Para evitar el agotamiento del suelo es recomendable realizar las siguientes practicas

Mantener un buen nivel de materia orgánica agregando abonos verdes, extractos húmicos y fúlvicos y evitando el uso excesivo de fertilizantes.

Aporte fraccionado de fertilizantes según las necesidades del cultivo.

Uso racional de agroquímicos con residualidad para evitar dañar la vida microbiana benéfica del suelo.

De ser posible rotación de cultivos, hacer manejo integrado de plagas y enfermedades incorporando herramientas que permitan disminuir el uso indiscriminado de agroquímicos nocivos para el medio ambiente.