Dirección

Zapopan, Jalisco, México

Celular/Whatsapp

332-832-0717 y 331-830-8731

Correo electrónico

contacto@agroproductores.com

Horarios de atención

9:00 hrs - 18:00 hrs.

AGROPRODUCTORES

Evaluamos las condiciones agro-ecológicas de tu zona y recomendamos un manejo integrado para los cultivos.

Archivo de categoría Fertirrigación

Riego por goteo

Riego por goteo

El riego por goteo consiste en la aplicación del agua a los cultivos de forma localizada a través de emisores denominados goteros, el agua se conduce con ayuda de tubería de distribución a cierta presión.

Riego por goteo
Cintilla de riego utilizada comúnmente en sistemas de riego por goteo

Los caudales de riego utilizados en producciones intensivas por goteo van de los 2 a los 4 litros por hora. Esto permite realizar aplicaciones de agua ligeras y frecuentes, manteniendo el suelo húmedo y próximo a capacidad de campo sin fluctuaciones grandes.

En estas condiciones la planta tiene agua disponible de fácil absorción y con un reducido costo energético para planta, en comparación con los sistemas de riego de baja frecuencia que suelen ser riegos pesados donde los niveles de agotamiento hídrico son muchos mayores.

El riego por goteo permite agregar los nutrientes que las plantas necesitan disueltos en el agua de riego. De esta manera bajo manejos adecuados se incrementa la eficiencia de aprovechamiento de los fertilizantes por las plantas.

Permite administrar mejor las cantidades de agua y fertilizantes que la planta necesita en las diferentes etapas de su desarrollo.

El riego por goteo es el preferido en las producciones agrícolas intensivas desplazando al antiguo riego por inundación o riego por gravedad. Estos tipos de riego se caracterizan por su baja eficiencia en el uso de agua y fertilizantes.

Absorción de nutrientes y transporte de agua en las plantas

 

Las plantas absorben nutrientes del suelo que están disueltos en el agua, todo aquel nutriente que no sea soluble no estará disponible para la planta debido a que no está disuelto en la solución del suelo.

Absorción de nutrientes en las plantas

La absorción del agua y de los componentes disueltos en ella se realiza través de las raíces. Los iones de nutrientes en el suelo tienen dos clases de movimiento.

a) agitación térmica provocadAbsorción de nutrientes y transporte de agua en las plantasa por las micelas coloidales del suelo, denominado movimiento browniano del suelo.

b) la diferencia de potencias electroquímicos provoca el movimiento de electrolitos según las distintas concentraciones de los mismos.

Transporte de agua en las plantas

El mecanismo de absorción de nutrientes y agua a través de la raíz se denomina difusión. Se realiza a través del tejido celular de la raíz, el plasmalesma, esto pasa sobre la superficie de los pelos radiculares de raíces jóvenes.

Las raíces jóvenes poseen un área superficial mayor, lo que incrementa el área de contacto con el exterior mejorando la absorción. Estas raíces jóvenes también poseen membranas celulares especialmente finas y vacuolas de mayor tamaño que en otros órganos de la planta. Es sobre estos pelos radiculares donde se realiza la absorción del agua y de las sustancias disueltas en ella.

Absorción de nutrientes en las plantas

La absorción de nutrientes es un proceso de intercambio de cargas electroestáticas sobre la superficie de los pelos radiculares. Los iones son intercambiados entre las posiciones del tejido de la raíz y  la solución del suelo. Esto provoca la absorción de nutrientes y agua hacia el interior de la planta.

La capacidad de intercambio catiónico de la raíz es diferente de especie en especie, podemos hablar de un promedio para monicotiledonas de  10-30 meq 100g-1 sobre materia seca y de 40-100 meq 100g-1 sobre materia seca.

Los cationes en la raíz se intercambian según su valencia por H+ y los anoines por iones OH- y HC3 . Este es el motivo por el cual los desequilibrios en la absorción de cationes acidifican y desequilibrios en la absorción de aniones alcalinizan.

Transporte y nutrición de las plantas

El transporte de nutrientes y agua dentro de la planta se lleva a través del xilema y floema. Existen dos movimientos contrapuestos que permiten el transporte, uno hacia arriba y otro hacia debajo de la planta. El movimiento del agua y los componentes disueltos, de la raíz a las partes superiores de la planta se realiza a través del xilema. El xilema transporta sabia no elaborada, contiene iones de la solución del suelo y compuestos de reducción de nitratos, ya que en algunas especies esto ocurre en la raíz.

Cuando se transporta hacia abajo, de las hojas hacia el resto de los órganos de la planta, las plantas utilizan el floema, a través de este desciende la sabia elaborada con los fotoasimilados creados a partir de la fijación del carbono en la fotosíntesis y contiene diferentes productos originados por el metabolismo secundario, también contiene una pequeña cantidad de nutrientes minerales que serán redistribuidos, en otras partes de la planta.

Absorción de agua en las plantas

El xilema y floema pueden considerarse como el sistema de circulación en las plantas, mediante esta circulación se mantiene un adecuado transporte de agua en las plantas y con ello se distribuyen los componentes que la planta necesita para realizar su metabolismo y mantenerse con vida.

Absorción de nutrientes por las hojas en las plantas

La vía del floema se utiliza cuando se realizan fertilizaciones foliares, los nutrientes son absorbidos a través de la membrana de las células, incorporados al floema y redistribuidos mediante este sistema. Recordemos que todos los nutrientes y compuestos dentro de la planta están disueltos en agua para poder ser transportados.

En sistemas agrícolas intensivos la aplicación de los nutrientes a las plantas, se realiza mediante la utilización de un sistema de riego con el cual se distribuye los fertilizantes que han sido disueltos en el agua de riego (fertirrigación) para abastecer a la plantas los nutrientes que necesita en su ciclo biológico y con ello generar un beneficio económico.

Conocer sobre el proceso de absorción y transporte de nutrientes ayudará a tomar decisiones en el abastecimiento de nutrientes para la planta. Entender que condiciones ambientales favorecen la asimilación o disponibilidad de los diversos nutrientes vegetales.

Factores que afectan la absorción de nutrientes en las plantas

Factores como conductividades altas en la solución del suelo, pH muy bajos o elevados, cantidad de agua disponible, son los principales factores que afectan severamente la absorción de nutrientes por las plantas,  el transporte de nutrientes a través de la misma planta también se ve afectado por estos factores.

Otros factores involucrados son cantidad de nutrientes, relación entre nutrientes, capacidad de intercambio cationico (CIC), potencial osmótico del suelo, condiciones atmosféricas, etc.

 

 

Compatibilidad de fertilizantes

Conocer como se comportan los fertilizantes cuando se combinan entre sí, ademas de conocer perfectamente que fertilizantes pueden combinarse entre sí, es fundamental para eficiente uso de los fertilizantes.

Antes de comenzar, debemos de tener claro a que se refiere el termino «compatibilidad».  Hoy día existen diversas fuentes de nutrientes vegetales y estas se comportan de una u otra manera cuando interactúan entre sí. Usualmente en fertirriego suelen prepararse soluciones nutritivas, estas soluciones tienen una concentración de los diversos nutrientes que la componen relativamente baja, con conductividad eléctrica relativamente baja , 2 dS/m en promedio. Y también se suelen usar soluciones nutritivas concentradas, es decir con conductividades eléctricas superiores a 10 dS/m, es en estas circunstancias  es cuando la compatibilidad de los fertilizantes cobra importancia.

En fertirriego, en un sistema de riego, se suelen tener distintos tanques de solución concentrada, normalmente se usa uno para la fuente de calcio, otro para las fuentes de sulfato y uno más para la fuente de fosfato, además de tener uno para la inyección de ácidos. Cuando nos referimos al termino compatibilidad hablamos de fertilizantes que pueden mezclarse en altas concentraciones, (por altas concentraciones nos referímos a mas de 10 veces concentrado).

Algunos fertilizantes utilizados en la fertirrigación de cultivos pueden no ser compatibles entré si. Un ejemplo de incompatibilidad es la precipitación de sulfatos al combinarse con calcio. Conocer las compatibilidad entre los fertilizantes evita problemas de precipitación y disminución de la disponibilidad de los nutrientes por interacciones químicas. Otra incompatibilidad es la de los sulfatos con los fosfatos que también se precipitan. El hecho de que un nutriente se precipite significa que no estará en solución del suelo, la planta no podrá absorber al nutriente  pesar de que este se encuentre en el suelo o sustrato.

Compatibilidad de fertilizantes para fertirrigación

En la tabla de abajo se muestran las compatibilidades de diversos fertilizantes usados en el fertirriego.

En la tabla de abajo se añade la compatibilidad del fosfato mono potásico, que es una fuente de fósforo y potasio, un fertilizante utilizado ampliamente en la fertirrigación.

Compatibilidad de fertilizantes de fertirriego

Consideraciones importantes al mezclar fertilizantes

Nitrato de amonio: Muy soluble, acidificante, elevada capacidad de salinización.

Nitrato de calcio: Completa incompatibilidad con sulfato de magnesio, nitrato de amonio y sulfato de potasio.

Fosfato tri cálcico: en aguas cálcicas y pH 6.5 existen precipitaciones, son más eficientes para estos casos los fosfatos mono amónicos, biamonicos o el ácido fosfórico concentrado.

Efectos antagónicos y sinérgicos de los elementos nutritivos en la solución del suelo. Por ejemplo, en suelos con elevado contenido de fosfatos y pH superiores a 7 no se debe aplicar sulfatos de hierro u oxidos de hierro como fuente de dicho elemento. Esto por que en estas condiciones estas fuentes se vuelven insolubles y por lo tanto no llegan a la solución del suelo. Para este tipo de suelo es recomendable utilizar hierro quelatado con un agente quelante de alta estabilidad, como lo es un EDDHA y HBED.

Nunca deben mezclarse fertilizantes que en su composición tengan hierro, fósforo y calcio, porque estos se vuelven insolubles. La compatibilidad entre fertilizantes que aportan estos nutrientes determina las fuentes a utilizar en la elaboración de la solución nutritiva.

Siempre será necesario realizar un análisis de agua para determinar la cantidad de calcio y magnesio que el agua aporta y adecuar las soluciones nutritivas a estas necesidades.

Los nutrientes conocidos como micronutrientes: Mg, Mn, Fe, Zn y el elemento secundario Ca, interactúan fuertemente con otros elementos presentes en el suelo, y pueden precipitarse o no estar disponibles para la planta debido a estas interacciones. Para solucionar este inconveniente en el mercado de los fertilizantes existe productos denominados quelatos que evitan este tipo de interacciones negativas y aseguran la disponibilidad del nutriente.

Los fertilizantes potásicos deben disolverse bien antes de ser aplicados.

Consideraciones de compatibilidad para micronutrientes quelatados

Los quelatos comerciales deben incluir en etiqueta un rango de estabilidad para la fracción quelatada, esta rango indica en que estabilidad el quelato mantiene su estabilidad, si el quelato es añadido a una solución que este fuera de su rango de estabilidad, este se romperá liberando al hierro que protege y perdiendo su utilidad.

Normalmente el rango de estabilidad de los quelatos usados en la agricultura como  EDTA, EDDHSA, EDDHA, DTPA, va de 3 a 11, por lo tanto no se debe mezclar con ácidos en concentraciones que den como resultado un pH menor a 3. Considerando que las pruebas de estabilidad se realizan con agua destilada, es aconsejable mantener los quelatos EDTA en soluciones mayores a 5 de pH.

Los quelatos no se deben aplicar en el tanque de ácidos debido a que en condiciones de pH muy bajos los agentes quelantes se destruyen y liberan al metal, por lo que se pierde el beneficio de protección del nutriente. La resistencia particular de cada quelato al pH depende de su tipo.

Tanques de solución madre de fertilizantes

Para obtener el máximo beneficio del sistema de fertirriego es recomendable tener entre 4-6 tanques de solución madre, incluyendo un tanque exclusivo para ácidos. Cuando se usan quelatos para abastecer los micronutrientes, es muy recomendable tener un tanque extra exclusivo para los micronutrientes. Esto debido a que los quelatos suelen mezclarse en el tanque junto a la fuente de calcio. Los quelatos pierden estabilidad con altas concentraciones de calcio y puede presentarse perdida de quelato.

Para evitar problemas de acumulamiento de sales en las mangueras de riego se recomienda comenzar y terminar los riegos solo con agua. La compatibilidad de los fertilizantes suele mostrarse en la ficha u hoja técnica que acompaña al producto.

Para los fertilizantes nitrogenados se recomienda verificar que el contenido de biuret sea menor al 1%. Debido a que provoca fitotoxicidad en las plantas.

 

La disponibilidad del agua

Asegurar la disponibilidad del agua mediante riegos eficientes, es sumamente importante en la agricultura, puesto que el agua utilizada en estos riegos son los que abastecen los cultivos que generan los alimentos de toda la población de la tierra.

Actualmente existen problemas de escases de agua en diversas partes del mundo y México no está excluido de ello. A medida que transcurra el tiempo los efectos de los escases se acentuaran y debemos estar preparados para cuando eso suceda.

Por este motivo, es importante usar sistemas de riegos eficientes y adecuados a las necesidades particulares de cada producción agrícola. Los sistemas de riego permiten administrar el agua que se ofrece en cada riego según las necesidades de cada etapa fenológica o de crecimiento del cultivo, como lo son: germinación, desarrollo vegetativo, floración, cuajado de fruto o amarre de fruto, desarrollo de fruto, maduración y cosecha.

Además, asegurar la disponibilidad del agua mediante riegos eficientes también trae consigo beneficios económicos, puesto que, al poder administrar los riegos, puedes también administrar los fertilizantes según las cantidades necesarias en cada etapa, y poder aplicar agroquímicos en él, cuando se traten de ingredientes activos con acción sistémica.

Actualmente la Organización Mundial de la Salud utiliza un concepto denominado “huella hídrica” que a continuación definimos: es el agua necesaria que es utilizada para producir algún bien o servicio consumidos por las personas. Y actualmente se desarrollan varias investigaciones en las que se pretende conocer la huella hídrica de todas las frutas o verduras consumidas por la humanidad. Es deber de nuestra y futuras generaciones desarrollar tecnologías que nos permitan adaptarnos a las necesidades de nuestro mundo y asegurar un modelo de producción agrícola sostenible a través del tiempo y las generaciones.

 

Fertirrigación

Se llama fertirrigación a la aplicación de fertilizantes hidrosolubles a los cultivos agrícolas, a través del sistema de riego. Con la fertirrigación se puede llevar un manejo preciso de las cantidades de fertilizante y agua, previniendo la aplicación en exceso de agua o fertilizante y evitando así contaminar mantos freáticos por la percolación de los fertilizantes, además se hace más eficiente el uso de agua y fertilizantes, mejorando la rentabilidad de las producciones agrícolas.

De esta manera se programan aplicaciones de fertilizantes y riegos, tomando en cuenta factores como el tipo de suelo, haciendo más riegos, pero de menor duración en suelos con texturas arenosos y riegos con una mayor duración en suelos franco-arcilloso, también se debe incluir las necesidades hídricas de cada cultivo especifico como factor influyente en la programación de fertirrigación.

Ventajas de la fertirrigación

Regula el abastecimiento de nutrientes y agua.

Se provoca menos compactación del suelo al disminuir las aplicaciones de fertilizantes realizadas por maquinarias pesadas.

Buena distribución del agua en la zona radicular de la planta.

Ahorro de agua, al ser más eficiente su uso.

Programación de las horas de riego.

Sistemas de riego con distribución uniforme debido a la presurización.

Reduce mano de obra.

¿Cuáles son los pasos de la aplicación de fertirriego?

El proceso de la fertirrigación es complejo e integral, involucra procesos químicos físicos y fisiológicos de lo que se conoce como sistema suelo-agua-planta. El objetivo que se persigue es mantener equilibrada la relación catión/anión de la solución nutritivita, que es así como se le llama la mezcla de agua y fertilizantes hidrosolubles.

Etapas fenológicas del cultivo

Durante el ciclo de vida, las plantas pasan a través de diferentes etapas de crecimiento, estas etapas se ven afectadas por la relación con los factores que componen al entorno donde la planta se encuentra, por lo tanto, las plantas cambiaran el tiempo que pasan durante una etapa especifica, acortando o alargando la etapa, según sean los factores que la rodena, principalmente la temperatura. A esta relación entre crecimiento y factores ambientales se le denomina etapas fenológicas, es decir las etapas fenológicas son etapas de crecimiento en las plantas, que nos indican las características que una planta tiene en algún momento particular de sus etapas de crecimiento.

Con el uso de la fertirrigación podemos administrar de mejor manera las cantidades de fertilizantes a aplicar, según las necesidades de cada etapa fenológica.

Manejo de la solución nutritiva

Una solución nutritiva es la combinación entre fertilizantes hidrosolubles y agua de riego en concentraciones adecuadas a las características de la zona y al tipo de cultivo donde será aplicada con el objetivo de satisfacer los requerimientos nutricionales de las plantas.

Las cantidades de fertilizantes a disolver en el agua incluye factores como: necesidades estimadas para cultivo especifico, etapa fenológica del cultivo, interpretación de análisis de agua, análisis de suelo o sustrato y las condiciones climáticas.

Al preparar las soluciones nutritivas es conveniente conocer la compatibilidad, solubilidad, acidez y grado de salinización de los fertilizantes. Estos cocimientos te ayudarán a realizar soluciones nutritivas eficientes y que garanticen una cosecha de alta calidad y rendimiento.

 

¿Qué es la hidroponía?

Se denomina hidroponía a la producción de cultivos sin suelo, en esta técnica de producción las plantas reciben los nutrientes suministrados a través del agua, en lo que se denomina solución nutritiva, la palabra deriva del griego «Hydro» que significa «agua» y «Ponos» cuyo significado es trabajo o labor, por esto el significado literal de la palabra «hidroponia» es «trabajo con agua».

Introducción

Las plantas son seres vivos que producen su propio alimento, para lograr esto tranforman el dioxido de carbono del aire, y los nutrientes que toman del suelo en azúcares y diversas sustancias que sirven para su desarrollo y crecimiento, esto proceso se denomina fotosíntesis.  Para lograr la fotosíntesis correctamente las plantas absorben agua y nutrientes disueltos en ella, del suelo. El suelo permite a la planta desarrollarse y anclar las raíces en el mismo para mantenerse erguida, el mismo suelo posee nutrientes que son disueltos en el agua y así absorbidos por las plantas. Cuando los investigadores descubrieron que los nutrientes deben de estar disueltos en el agua para ser absorbidos surgió la hidrpononia.

En la hidroponia se utilizan sustratos, que sirven de anclaje para la planta, y allí desarrollan sus raíces, existen diferentes tipos de sustratos, y cada uno tiene características particulares, lo ideal es consultar la disponibilidad de sustrato en la región donde se encuentre la producción agrícola.

Las ventajas de la hidroponía

Algunas de los principales beneficios de esta técnica es la precisión en el control de las variables como conductividad eléctrica, pH y concentración de nutrientes, al mismo modo esta modalidad de la producción implica una inversión mayor en la tecnología necesaria para llevarla a cabo.

Se aumenta la eficiencia de los fertilizantes cuando los planes nutricionales son elaborados en base a análisis de la solución nutritiva y las curvas de concentración nutrimental foliar, o los métodos que hallan designado para determinar los valores de cada nutriente.

Uso eficiente del agua al existir sistemas de producción con recirculación, que permite aprovechar de mejor manera el recurso agua.

En la práctica las técnicas de hidroponía son aplicadas principalmente a cultivos de alta rentabilidad, como serían los cultivos para exportación: tomate, pimiento, pepino, arándano. Esto debido a que su rentabilidad les permite costear la inversión necesaria en equipamiento tecnológico que les permita el óptimo aprovechamiento de estas técnicas de hidroponía.

Tipos de hidroponía

Existen diferentes clasificaciones para la hidroponía, según sea el criterio de clasificación que se elija, una clasificación de relevancia es la que se hace conforme a la modalidad de producción bajo la cual está el cultivo y que se divide en dos las siguientes:

Hidroponía Orgánica

En este tipo de hidroponía solo se pueden utilizar insumos nutricionales (fertilizantes) que tengan certificaciones que acrediten que el producto está permitido en la producción orgánica. La definición de producción orgánica se ajusta a las diferentes legislaciones vigentes en los países donde se planea comercializar el cultivo bajo la modalidad de producción orgánica. Existen entidades reguladoras en este mercado que se encargan de supervisar que el criterio necesario para la acreditación orgánica sea cumplido, algunos ejemplos son Global Gap, SAGARPA, OMRI, entre otras muchas.

Hidroponía convencional

Este tipo de hidroponía puede utilizar todos aquellos insumos nutricionales aprobados por los diferentes organismos de regulación según las legislaciones de los lugares donde se pretenda realizar la producción, para el caso de México este organismo es La Comisión Federal para la Protección contra Riesgos Sanitarios ​ es una dependencia federal del gobierno de México, vinculada con el Departamento de Regulación y Fomento Sanitario de la Secretaría de Salud. (COFEPRIS). La validación de este organismo estará escrita en la etiqueta y deberán poseer el registro COFEPRIS que avale el producto.

Técnicas de hidroponía.

Existen diferentes formas en las que, en la práctica, la hidroponía se realiza, a continuación se nombran algunas de las técnicas mas utilizadas.

Técnica de hidroponía NFT

También conocida como técnica de lámina fina de nutrientes, su nombre en inglés es Nutrient Film Technique, de allí las abreviaciones NFT. Esta técnica consiste en suministrar la solución nutritiva a través de una lámina fina que moje constantemente las raíces y que este en circulación para evitar daños por poca oxigenación. El sistema está diseñado para la recirculación de la solución nutritiva, está en monitorizada constantemente para que cuando esta ya no tenga las condiciones adecuados sea reemplazada con nueva solución nutritiva que aporte los nutrientes necesarios.

Este tipo de técnica es muy favorable para la producción de cultivos de hoja, como las diversas variedades de lechugas, espinacas; las distintas estructuras para la técnica NFT están diseñadas para ahorrar especio y eficientar espacios y uso de agua, suelen ser estructuras de pvc para la conducción de la solución nutritiva.

Raíz flotante

También puede ser llamada producción en estanques, esto se debe a que los cultivos están flotando ayudados de estructuras de poca densidad, que flotan fácilmente, como unicel, y las raíces están sumergidas completamente en la solución nutritiva.

En sustrato

Este tipo de hidroponía se realiza cuando se dispone de un sustrato diferente al suelo y que asegure que sea inerte químicamente para que no influya negativamente en la disponibilidad del agua y los nutrientes. El sustrato servirá de anclaje para la planta y la solución nutritiva se aplica mediante riego localizado, la solución nutritiva estará disuelta en el agua de riego, los cultivos suelen establecerse en sustratos dentro de contenedores que se ajustan en tamaño según las diferentes necesidades de cada cultivo. Existe una gran variedad de sustratos en disponibles para utilizar en esta técnica, para determinar la mejor elección es necesario realizar una caracterización física de sustratos en tu laboratorios de suelos mas cercano.

 

Dureza del agua

La dureza del agua es un componente de la calidad del agua. Esta determinado por la concentración de sales en el agua, en medida que el contenido de sales se incrementa en el agua mayor dureza tendrá.

Hay una gran cantidad de sales presentes en el agua, pero las principales son las sales de Magnesio (Mg) y Calcio (Ca). Cuando un agua es dura esta tiende a generar incrustaciones por precipitaciones en los tanques donde se almacena.

Las aguas duras también provocan daños en  las tuberías por las que se transporta. El daño deriva del taponeamiento provocado por la acumulación de precipitados. De forma practica es fácil detectar aguas duras. Cuando un agua dura se evapora, deja residuos blaquecinos. Estos residuos la mayoría de las veces son sales de calcio y magnesio. Dos de las principales sales encontradas en aguas duras son bicarbonato de calcio y bicarbonato de magnesio.

La dureza del agua para uso agrícola

La dureza del agua

En agronomía la dureza del agua es importante por que nos indica la probabilidad de que se provoquen precipitaciones por la interacción de algunos nutrientes con las sales de Calcio (Ca) y Magnesio (Mg) presentes ene aguas duras. La dureza del agua disminuye la vida media de los agroquimicos.

Es decir, un insecticida o fungicida se degradará más rápido cuando se aplica usando aguas duras, que cuando se usan hablas de calidad. Las aguas duras reducen la eficiencia de los agroquímicos al reducir su vida media.

Las aguas duras también poseen una conductividad eléctrica elevada. Este factor puede limitar el uso de estas aguas en el riego de ciertos cultivos susceptibles a conductividades eléctricas elevadas. Un ejemplo de este cultivo puede ser el arándano azul que requiere de conductividades menores a 2 para su riego.

Indice de dureza en el agua

Existe un rango de concentraciones de estas sales, que indica la dureza del agua. Este indice se basa en la concentración expresado en partes por millón del total de sales que contiene.

Aguas blanda: Aguas con concentraciones de 50 partes por millón son consideradas aguas blandas,

Aguas de dureza media: Aguas de 50 a 100 partes por millón son aguas de dureza media.

Aguas duras: Aguas que van de las 150 a las 200 partes por millón entran en la clasifican de aguas duras. Las aguas duras pueden ser utilizadas para riego agrícola con el correcto manejo agronómico de esta. Las aguas muy blandas, menores a 50 ppm son corrosivas para tuberías metálicas de conducción.

Técnicamente la dureza es la concentración total, expresada en peso, de los iones de sales de Calcio y Magnesio, y suele expresarse en equivalente carbonato de calcio en ppm o mg por litro. El mayor riesgo de las aguas duras es la formación de precipitados formados al reaccionar las sales de Calcio y Magnesio con algunos nutrientes utilizados en la fertilización, algunos de estos fertilizantes son los fosfatos y sulfatos.