Dirección

Zapopan, Jalisco, México

Celular/Whatsapp

332-832-0717 y 331-830-8731

Correo electrónico

contacto@agroproductores.com

Horarios de atención

9:00 hrs - 18:00 hrs.

AGROPRODUCTORES

Evaluamos las condiciones agro-ecológicas de tu zona y recomendamos un manejo integrado para los cultivos.

Archivo de categoría Nutrición Vegetal

Capacidad de intercambio catiónico (CIC)

La capacidad de intercambio catiónico (CIC) se refiere a la capacidad de un suelo para  liberar y retener cationes y aniones. La capacidad de intercambio catiónico depende del tipo de humus y de la proporción y tipo de arcilla en el suelo.

Capacidad de intercambio catiónico es un valor que determina que tan fácil o difícil es que el suelo libere algún nutriente para que se utilizado por las plantas

Los nutrientes en el suelo se encuentran en forma de cationes o aniones según su naturaleza, por lo tanto la CIC indica la facilidad que un suelo tiene para intercambiar dichos nutrientes entre la fracción solida y la liquida del suelo.

La materia orgánica en su proceso de descomposición origina los diferentes tipos de sustancias húmicas, y a esto se debe su gran importancia en el CIC de los suelos.

La capacidad de intercambio catiónico involucra el proceso en el que los aniones y cationes son intercambiadas en entre la fase liquida del suelo (solución del suelo) y la parte sólida.

La unidad de la cantidad de cationes intercambiados se expresa en miliequivalentes por cada 100 gramos de suelo. (meq/100 g).

Importancia de la capacidad de intercambio catiónico

La CIC es muy importante debido a que indica la mayor o menor disponibilidad de nutrientes en el suelo. Un mayor CIC indica mejor disponibilidad de los nutrientes en el suelo.

La capacidad de intercambio catiónico (CIC) es distinta según el tipo de suelo, hay suelos con baja CIC considerados suelos poco fértiles, la textura influye en el valor de CIC, suelos con alto contenido de arcilla posee una CIC mas alta.

La CIC puede determinarse a través de un análisis de suelo o un análisis de extracto de pasta saturada.

Las relaciones del intercambio de cationes con el crecimiento de las plantas radica en que a mayor CIC mayor disponibilidad de nutrientes presentes en las rizosferá habrá para las plantas. Esto quiere decir que un CIC alto es caracteristico de suelos fértiles y óptimos para la agricultura.

¿Qué es el CIC en el suelo?

Es una medida que indica que tan disponibles estarán los diversos nutrientes vegetales en el suelo para la planta. Por lo tanto un CIC elevado indicará suelos fértiles donde los nutrientes estarán fácilmente disponibles para las plantas, mientras que CIC bajos nos dirán que en dichos suelos la disponibilidad de los nutrientes será baja y por lo tanto pueden ocasionarse deficiencia de nutrientes en las plantas.

¿Qué son los cationes intercambiables?

Los cationes intercambiables son aquellos elementos o compuestos presentes en el suelo con carga positiva que se disocian o disuelven en el agua y que forman la solución del suelo.

Factores que influyen en la capacidad de intercambio cationico

Muchos son los factores que influyen en la capacidad de intercambio catiónico, algunos de los mas importantes son:

Contenido de materia orgánica

La materia en descomposición se transforman en diferentes componentes cada ves mas simples que tienen influencia sobre la CIC del suelo. Los acidos fúlvicos y húmicos son un ejemplo de este tipo de sustancias e incrementa la CIC de un suelo o sustrato.

Tipo de suelo

El tipo de suelo influye en el CIC, los suelos arenosos tienden a una baja CIC mientras que los arcillosos a un mayor CIC. Los suelos arenosos suelen tener baja CIC, esto provoca un menor contenido de nutrientes, mayor lavado de nutrientes y menos capacidad de retención de agua.

Mantenimiento del suelo

En producciones agrícolas intensivas se debe aportar materia orgánica al suelo continuamente, o bien extractos húmicos que permitan mantener en buenos niveles la CIC. Cuando año tras año se producen cultivos en la misma tierra esta pierde su CIC paulatinamente si no se realizan aportes de materia orgánica y mejoradores de suelo en general ya sea biológicos, minerales y orgánicos.

 

 

 

 

 

La solución del suelo

La solución del suelo es el conjunto formado por el agua que contiene un suelo y los distintos elementos disueltos en ella incluido los nutrientes vegetales. Es en la solución del suelo donde los nutrientes que contiene el suelo y los que son aportados por fertilizantes se disocian en aniones y cationes.

La solución del suelo incluye todos los nutrientes que las plantas necesitan para crecer y desarrollarse.

La solución del suelo y sus componentes

Esta compuesta por todos los elementos minerales (incluidos los nutrientes vegetales) y orgánicos solubles en agua que el suelo contiene.

Sustancias orgánicas disueltas: acídos húmicos, fulvicos, productos microbianos, aminoácidos, peptidos, proteínas,

Sustancias minerales: Hierro, zinc, calcio, nitrogeno, fósforo, potasio, oxigeno, manganeso, magnesio, boro, molibdeno, silicio, aluminio, sodio, todas las sales fertilizantes, silicatos, y componentes minerales del suelo.

Es decir la solución del suelo esta compuesta por agua y por todos los elementos minerales que son necesarios para el crecimiento de las plantas, así como sustancias orgánicas como extractos húmicos, aminoacidos, etc.

Todos los nutrientes para estar disponibles para las plantas deben estar disueltas en la solución del suelo, si no lo están, las plantas no podrán absorberlos a través de sus raíces y se dice que no existe disponibilidad del nutriente.

Por ejemplo, el nitrato de potasio (NO3K) se disocia en un anión de nitrato (NO3) y un catión de potasio (K+).

La solución del suelo es absorbida por las raíces de las plantas y es así como estas obtienen los diversos nutrientes necesarios para su desarrollo.

La solución del suelo contiene los siguientes cationes y aniones:

Cationes

calcio (Ca+2), magnesio (Mg+2), potasio (K+), amonio (NH4+), hidrogeno (H+) sodio (Na+), hierro (Fe+2), etc.

Aniones

fosfato (PO4-3, PO4H, PO4H2) sulfato (SO4) nitrato (NO3), cloruro (Cl), etc.

En una producción agrícola intensiva la solución del suelo está en constante cambio debido a la aplicación de fertilizantes a través del sistema de riego.

Los cationes son retenidos en el complejo arcillo húmico, con un constante cambio, buscando siempre un equilibrio entre la solución del suelo y el complejo de intercambio.

El correcto equilibrio en la solución del suelo depende de la buena fertilización que se realice, tomando en cuanta las características del suelo agua y ambiente.

Todos los nutrientes disponibles para las plantas están disueltos en la solución del suelo, si los nutrientes no están disueltos en esta solución se dice que los nutrientes no están disponibles para las plantas.

La cantidad de nutrientes disueltos en la solución del suelo puede obtenerse a través de un análisis de laboratorio conocido como análisis de extracto saturado.

También puede determinarse con un análisis de la solución obtenida de chupatubo.

 

Riego por goteo

Riego por goteo

El riego por goteo consiste en la aplicación del agua a los cultivos de forma localizada a través de emisores denominados goteros, el agua se conduce con ayuda de tubería de distribución a cierta presión.

Riego por goteo
Cintilla de riego utilizada comúnmente en sistemas de riego por goteo

Los caudales de riego utilizados en producciones intensivas por goteo van de los 2 a los 4 litros por hora. Esto permite realizar aplicaciones de agua ligeras y frecuentes, manteniendo el suelo húmedo y próximo a capacidad de campo sin fluctuaciones grandes.

En estas condiciones la planta tiene agua disponible de fácil absorción y con un reducido costo energético para planta, en comparación con los sistemas de riego de baja frecuencia que suelen ser riegos pesados donde los niveles de agotamiento hídrico son muchos mayores.

El riego por goteo permite agregar los nutrientes que las plantas necesitan disueltos en el agua de riego. De esta manera bajo manejos adecuados se incrementa la eficiencia de aprovechamiento de los fertilizantes por las plantas.

Permite administrar mejor las cantidades de agua y fertilizantes que la planta necesita en las diferentes etapas de su desarrollo.

El riego por goteo es el preferido en las producciones agrícolas intensivas desplazando al antiguo riego por inundación o riego por gravedad. Estos tipos de riego se caracterizan por su baja eficiencia en el uso de agua y fertilizantes.

Disponibilidad de nutrientes según pH del suelo

La acidez del suelo depende la concentración de cationes hidrogeno (H+) en lo que se conoce como solución del suelo. La solución del suelo está compuesta por agua y las partes solubles del suelo.

En la solución del suelo se encuentran disueltos los nutrientes que la planta absorberá a través de las raíces. La mayor o menor acidez del suelo se mide con la escala de pH. La escala va del  1 – 14. La disponibilidad de nutrientes según el pH es compleja, existen algunos nutrientes que estarán disponibles a ciertos valores mientras que otros nutrientes si estarán disponibles.

Influencia del pH en la absorción de nutrientes en las plantas

Cuando el valor de la escala de pH está en el número 7 se dice que es un suelo neutro, entre el valor este más cercano a uno, mas ácido será el suelo, mientras que cuanto más cercano este al 14 más básico o alcalino será el suelo. La disponibilidad de los nutrientes según el pH del suelo es mejor a valores de 5.5 – 6.5. Bajo este rango de valores de pH todos los nutrientes están disponibles.

Los nutrientes interactúan con el suelo a través de muchos factores, y uno de esos factores es el pH, según cambie su valor cambiara la disponibilidad de los nutrientes.

En la tabla se muestra la disponibilidad de los nutrientes esenciales para las plantas según el valor de pH de la solución del suelo o solución nutritiva.

Disponibilidad de nutrientes según el pH del suelo - Agroproductores

Es prudente recordar que existen otros factores que disminuyen la disponibilidad de nutrientes, especialmente el grupo de los micronutrientes.

Para el hierro (Fe) por ejemplo, se precipitan en presencia de oxígeno y fósforo en forma de  fosfatos, al igual que el zinc. O la incompatibilidad entre los fosfatos y el nitrato de calcio que es ampliamente conocida.

Para conocer más sobre factores que afectan la disponibilidad de nutrientes para las plantas te recomendamos leer nuestro artículo sobre incompatibilidad de fertilizantes.

 

Fosfito de potasio

El fosfito tiene actividad elicitora sobre las plantas, es decir que desencadenan una serie de respuestas que mejoran la respuesta ante ataques de patógenos.

Los fosfitos mejoran la respuesta de las plantas a enfermedades por el proceso conocido como resistencia sistémica adquirida.Los fosfitos son considerados como bionutrientes o bioestimulantes, debido a que estimulan procesos biologicos de las plantas.

En el mercado existen varias fuentes de fosfito, según sea el proceso de su fabricación. La mayoría de fuentes de fosfito en el mercado están formuladas por de la formación de una sal alcalina a partir de ácido fosforoso.

Ficha técnica

Para obtener esta sal (fosfito) suelen utilizarse moléculas con contenido de potasio o calcio, por ello existen fosfito de potasio o fosfito potásico, fosfito de calcio o fosfito cálcico y fosfito de magnesio o fosfito magnésico, todos estos nutrientes son cationes con carga positiva.

Fosfito de potasio (K)

Posee fósforo y potasio en su contenido, el fósforo está en forma de fosfito. El fósforo está en mayor contenido que el de potasio.

Fosfito de calcio (Ca)

Posee fósforo y calcio en su contenido, el fosforo está en forma de fosfito. El fósforo está en mayor contenido que el del calcio.

Fosfito de magnesio (Mg)

Posee fósforo y magnesio en su contenido, el fósforo está en forma de fosfito, el fósforo está en mayor contenido que el magnesio.

Fosfito y fósforo

El fosfito tiene fósforo en su composición, pero estos no poseen iguales efectos sobre la planta. El fósforo es un nutriente esencial para el desarrollo de las plantas superiores, si no existen cantidades adecuadas de fósforo la planta no llevará a cabo correctamente su desarrollo.

El fósforo es absorbido por las plantas en forma de fosfatos inorgánicos, principalmente como anión fosfato monobásico y anión fosfato dibasico, y las plantas los integra a su metabolismo tal como fueron absorbidos.

El fosfito al ser muy parecido a un fosfato es absorbido por el mismo proceso por el cual se absorben los fosfatos, pero al no ser completamente igual que el fosfato este no se integra a metabolismo como un fosfato, el fosfito no es una fuente de fósforo.

Los fosfitos provocan efectos positivos en las plantas, pero no por ser una fuente de fósforo como nutriente, sino más bien, porque los fosfitos provocan un efecto elicitor y mejoran la sanidad de las plantas al provocar el proceso conocido como resistencia sistémica adquirida.

El fosfito posee mayor solubilidad que los fosfatos.

Beneficios agronómicos del fosfito de potasio, de calcio o magnesio

La aplicación de los fosfitos sobre los cultivos provocarían una mejor respuesta de los cultivos a las enfermedades, debido al efecto elicitor, además de la aportación del nutriente que le acompaña, es decir un aporte ya sea de potasio, calcio o magnesio , según sea la fuente de fosfito que se utilice.

 

 

 

Funciones del zinc en las plantas

Las funciones del  zinc en las plantas son amplias, principalmente como componente o activador de un gran número de enzimas indispensables en el desarrollo y reproducción de las plantas. El Zinc participa en la síntesis natural de las auxinas y en el de la clorofila. La deficiencia de zinc (Zn) provoca alteraciones en el desarrollo de las plantas, afectando su rendimiento.

La concentración normal de zinc (Zn) en un análisis foliar en base a materia seca va de un rango de 20 – 100 ppm. Este rango es general y cambia entre cultivo y cultivo. Generalmente valores inferiores a 20 ppm ya muestran síntomas de deficiencia de zinc (Zn).

Funciones del zinc en las plantas

Funciones del zinc en la planta

El zinc es indispensable en la formación de proteínas, debido a que forma parte de los ribosomas, lugar donde comienza la síntesis de proteínas.

El zinc también participa en el metabolismo de los carbohidratos, este metabolismo es indispensable para transferencia de energía y aprovechamiento de los fotoasimilados obtenidos de la fotosíntesis.

El zinc es esencial para la síntesis del aminoácido triptófano y éste es el precursor del ácido indol acético o auxinas cuando se sintetizan en la planta. Por este motivo su deficiencia provoca entrenados cortos, y crecimiento raquítico en algunos cultivos como el nogal.

El zinc (Zn) pertenece a los denominados micronutrientes o microelementos que son necesarios en pocas cantidades pero indispensables para el correcto desarrollo de las plantas. Las funciones del zinc en las plantas están estrechamente relacionadas con la actividad auxinica.

Función del zinc en la planta

Deficiencia de zinc en las plantas

La deficiencia de zinc en las plantas puede ser provocada por ausencia del elemento en el suelo o solución nutritiva.

pH fuera de 5.5-6.5 pueden reducir la disponibilidad del nutriente para la planta. Esto sucede por que el zinc reacciona con compuestos del suelo, como los fosfatos volviéndose insolubles.

Debido a que las funciones del zinc en las plantas son indispensables para su correcto desarrollo y crecimiento es de suma importancia evitar las deficiencias.

Después de la deficiencia de hierro (Fe) esta es una de las deficiencias mas comunes de los micronutrientes. Los suelos salino sódicos, alcalinos, calcáreos y con pH por arriba de 7 suelen presentar baja disponibilidad del zinc para las plantas, provocando deficiencias en la producción agrícola.

Síntomas de deficiencia de cinc (Zn) en las plantas

La deficiencia de zinc en las plantas ocasiona clorosis en las nervaduras de las hojas más jóvenes. Es un amarillamiento de las hojas jóvenes muy parecido a la provocada por la deficiencia de hierro y de manganeso. Y la segunda deficiencia mas frecuente de micronutrientes, después de la hierro. Por lo que para identificar bien la deficiencia se debe verificar que se cumpla los siguientes síntomas:

Un síntoma muy característico de deficiencia de zinc en las plantas es el acortamiento de entrenudos, provocando lo que se denomina arrocetamiento de las plantas.

Zinc en plantas

El arrocetamiento se debe que las funciones del zinc en la planta están sumamente relacionadas con la síntesis de la fitohormona llamada auxina, al ser deficiente el zinc las auxinas no se sintetizan de manera adecuada por lo que existen alteraciones en el desarrollo de la planta  debido a niveles deficientes de auxinas en la planta.

¿Cómo corregir una deficiencia de zinc en las plantas?

Para realizar una corrección eficiente hace falta considerar el tipo de cultivo, de producción, manejo que se le da al cultivo y otras muchas cosas.

Hablando de forma general, suelen realizar aplicaciones foliares o al suelo de fuentes de zinc (Zn) como sulfatos de zinc, o aplicaciones de quelatos o complejos de zinc que suelen ser mucho más efectivos para la corrección que las sales minerales sin quelatar o complejar. Los agentes quelantes mas usuales para quelatar zinc son el EDTA y IDHA.

Se debe buscar corregir los agentes causales de la deficiencia, por lo que en suelos calcáreos, salino sodicos, con pH superiores a 7 lo mas recomendable es el uso de quelatos de zinc. Cuando la deficiencia se da por un carencia real de zinc en el suelo y no por baja disponibilidad, el sulfato de zinc y el oxido de zinc son una buena opción.

Fertilizantes con zinc

Existen varios fertilizantes utilizados para aportar zinc (Zn)  a los cultivos en la producción agrícola. Entre ellos el sulfato de zinc, oxido de zinc y el quelato de zinc. El sulfato de zinc es inestable y puede precipitarse en pH alcalinos (superiores a 7), el quelato de zinc tiene la propiedad de mantenerse disponible sin precipitar en pH alcalino.

Utilizando estas fuentes fertilizantes es posible aportar zinc a las plantas para evitar deficiencias que mermen el rendimiento.

Toxicidad del zinc en las plantas

La toxicidad del zinc provoca una reducción de la masa radicular de las plantas, un crecimiento deficiente, hojas mal expandidas. La fitotoxidad de zinc suele presentarse con valores por encima de 200 ppm o mg por kilogramo en un suelo.

 

 

 

Función del hierro en las plantas

El hierro en las plantas forma parte estructural de mas de 100 enzimas, estas enzimas participan en procesos como fotosíntesis, respiración, absorción de iones, transferencia de energía y la síntesis de la clorofila.  Debido a que el hierro participa en la biosintesis de la clorofila, la deficiencia de este nutriente disminuye la cantidad de clorofila en la planta, lo que observamos como plantas amarillentas.

Es común observar deficiencias de hierro en suelos o sustrato con abundante contenido del mismo mineral, esto se debe a que el hierro es un elemento muy reactivo, y reacciona con sulfatos, hidróxidos, bicarbonatos, entre otros componentes del suelo.

Cuando el hierro reacciona se vuelve insoluble y por lo tanto no disponible en la solución del suelo para que las plantas puedan absorberlo.

La función del hierro en las plantas es indispensable e insustituible, es uno de los nutrientes esenciales en las plantas, todas las plantas necesitan hierro para su correcto desarrollo y reproducción.

El hierro pertenece al grupo de nutrientes denominados micronutrientes o microelementos, que son indispensables en el ciclo de vida de cualquier planta o cultivo.

Función del hierro en las plantas

El hierro es cofactor de mas de 100 enzimas que catalizan reacciones bioquímicas únicas e indispensables en los procesos como la fotosíntesis, respiración, metabolismo del nitrógeno, y de los sulfatos, juego un papel muy importante en la transferencia de electrones (reacciones de oxido reducción), procesos que forman parte deFunción del hierro (Fe) en las plantas la fotosíntesis.

El hierro tiene la capacidad de ceder y ganar un electrón, lo que se conoce como capacidad redox. Esta cualidad del hierro lo hace participar en un sin números de procesos en las que las reacciones redox son indispensables. Un ejemplo claro, es que el hierro forma parte de algunas enzimas antioxidantes, que participan en la neutralización de radicales libres de oxigeno para evitar daños celulares.

El hierro forma parte de la ferredoxina, que es una proteína que funciona como aceptor de electrones en la cadena de electrones del fotosistema II, parte fundamental para el proceso de fijación de carbono, conocido como fotosíntesis.

Clorosis férrica

El síntoma característico de una deficiencia de hierro en las plantas es una clorosis o amarillamiento intervenal en las hojas, debido a que una de las principales funciones del hierro en las plantas es participar en la síntesis de la clorofila.

El hierro es un elemento poco móvil dentro de las plantas, los síntomas de deficiencia se presentan en las hojas jóvenes. Siendo las hojas jóvenes las que muestren  los síntomas más marcados, como amarillamiento internerval de las hojas.

La clorosis por deficiencia de hierro se caracteriza por ser un amarillamiento entre nervaduras, mientras que las nervaduras son verdes. En comparación con la clorosis por deficiencia de nitrógeno en la que tanto las nervaduras como la sección internerval se tornan amarillas, mostrándose un amarillamiento generalizado de la hoja.

La deficiencias de zinc (Zn) y manganeso (Mn) son parecidas a las provocadas por el hierro (Fe), ya que todas estas se observan como una clorosis en las hojas mas jóvenes. La mas usual en cambio, es la clorosis férrica, debido a que es un elemento muy reactivo en el suelo.

Deficiencia de hierro en las plantas

La deficiencia puede provocarse por la ausencia real del hierro en el suelo o en lo solución nutritiva, o por condiciones que limitan la disponibilidad del hierro para la planta. Estos factores pueden ser suelos con elevado pH o bien en soluciones nutritivas con pH por encima de 6.5-7.

Deficiencia de hierro en las plantas

La deficiencia de hierro es común en suelos calcáreos, que suelen tener pH mayores a 7.  El hierro suele reaccionar con otros componentes del suelo o sustrato.

Cuando el hierro es aplicado en forma de sulfato de hierro u oxido de fierro, estos reaccionan con los fosfatos o el mismo oxígeno, precipitando al hierro, esto impide su solubilidad en el agua y por lo tanto es imposible que la planta lo absorba por medio de la raíz.

Síntomas de deficiencia de hierro en las plantas

Las plantas con deficiencia de hierro suelen mostrar amarilamiento o clorosis, este amarillamiento comienza en las hojas más jóvenes de la planta, es decir en los puntos del crecimiento del cultivo, debido a la poca movilidad del hierro en la planta.

Cuando los síntomas se presenten en hojas adultas, significa que la deficiencia es de grado alto, y ya ha causado severas repercusiones en el desarrollo de la planta.

Clorosis férrica por deficiencia de hierro

¿Cómo corregir una deficiencia de hierro en las plantas?

Para realizar una corrección eficiente hace falta considerar el tipo de cultivo, de producción, manejo que se le da al cultivo y otras muchas cosas. También debe tomarse en cuenta que la principal función del hierro en las plantas es participando en la síntesis de clorofila.

Hablando de forma general, suelen realizar aplicaciones foliares o al suelo de fuentes de hierro como sulfatos de hierro, o aplicaciones de quelatos  o complejos de hierro (Fe) que suelen ser mucho más efectivos para la corrección que las sales minerales sin quelatar o complejar.

Cuando se busque aplicar el riego a través del sistema de riego o en aplicaciones al suelo, la opción mas eficiente es mediante el uso quelatos de hierro (Fe).

Mientras, que cuando se busque realizar aplicaciones foliares, los complejos de hierro son efectivos.

Actualmente el mercado ofrece quelatos de hierro, esta fuente de hierro impide su precipitación en el suelo, y facilita la disponibilidad del hierro para las plantas, evitando problemas de deficiencia. La función del hierro en las plantas es vital por lo que se deben evitar las deficiencias de este nutriente.

Uno de los quelatos más utilizados gracias al amplio rango de estabilidad en pH es el denominado agente quelante EDDHA, otros agentes quelantes utilizados son HBED, EDTA, IDHA, etc.

Para suelos calcáreos, con pH por arriba de 7 y con alto contenido de caliza, lo mas recomendable es usar quelatos de alta estabilidad como HBED, EDDHA y EDDHSA.

En suelos sin problemas de alcalinidad se recomienda usar DTPA, EDTA y IDHA.

La incorporación de ácidos humidifico y especialmente fúlvicos que mejoran la disponibilidad del hierro en los suelos.

Toxicidad del hierro (Fe)

Cuando se aplica una cantidad mayor de hierro al que las plantas necesitan, puede presentarse un efecto toxico en la planta debido al exceso de hierro. Los síntomas de la toxicidad por hierro en las plantas suele verse como un bronceado de las hojas, que evolucionan a manchas de color café.

Algunos investigadores reportan que niveles de 300 a 400 ppm o mg por kilogramo de suelo provocan fitotoxicidad por hierro en la planta.

Los niveles normales de hierro en la plantas en un análisis foliar están en un rango de 50-250 ppm. Este es un promedio general, el contenido varia según la etapa de desarrollo de la planta.

Peat moss – Sustrato

El peat moss es un sustrato muy utilizado en cultivos en sistemas hidropónicos o en sistemas de fertirrigación. El peat moss proviene de un musgo del genero Spahgnum, conformado por un buen número de especies de musgo. Este musgo crece en bosques fríos y pantanosos, el sustrato es de apariencia esponjosa.

El peat moss se forma por la acumulación de materia orgánica en el suelo que comienza su comienzo de degradación, debido a las temperaturas bajas este proceso es muy lento y da origen a peat moss con una variedad de colores según su grado de descomposición.

Es un sustrato orgánico debido a que provienen de material vegetal, con buena capacidad de aireación, las características particulares dependen de la calidad y origen del peat moss. Tiene buena capacidad para retener agua cuando el peaat moss es de calidad.

Según su color se pueden clasificar de la siguiente manera:

Turbas rubias

Son las que no hace mucho comenzaron el proceso de descomposición, contienen una elevada cantidad de materia orgánica.

Turbas negras

Son las que ya llevan un avanzado proceso de descomposción, su contenido en minerales es mayor y el de materia seca es menor. Por la descomposción que la turba lleva a cabo, su pH es acido, cercano a los 4 pH, por ello se debe regular el pH de la turba a los buscados en el cultivo se que produzca.

Existen clasificaciones por el tamaño de sus partículas

Se pueden clasificar como peat mos finos y peat moss gruesos, esto dependerá de la comercializadora, los finos son usados generalmente para germinación, mientras que los gruesos durante la producción del cultivo, la selección del tipo de peat moss tambien dependerá del tipo de manejo agronómico que se le desee dar.

 

 

 

Agricultura de subsistencia

Analisis de suelo agrícola en México

Los análisis del suelo agrícola permiten conocer las características físicas, químicas y biológicas  del suelo, sobre su fertilidad y ayuda a diseñar el programa de fertilización mas idóneo para la condiciones del suelo y cultivo.

Con esta información evitamos fertilizaciones excedidas , cosa muy habitual hoy en día. La precisión de una análisis de suelo depende de que la toma de la correcta toma de muestras y de su interpretación.

Los análisis de suelo están basados en metodologías especificas, y normalizados con métodos analíticos, que deben ser aplicados en los laboratorios donde se realicen los estudios.

Hoy en día existen diferentes metodologías para analizar las muestras de suelo, cada método utiliza un equipo, instrumental y productos químicos distintos, por lo que el resultado y evaluación de los contenidos del suelo no pueden ser iguales para todos los laboratorios, un análisis de suelo debe hacer referencia al método empleado para calcular el contenido de nutrientes y su interpretación.

Tipos de análisis de suelo

Físico

Mediante este análisis de calculan los porcentajes de arena, limo y arcilla, con estos datos se obtiene la textura del suelo, densidad real, densidad aparente, granulometria, humedad, y porcentaje de saturación de suelo.

Químico

Existen dos tipos de análisis químicos que se hacen por regla general y son:

Análisis de fertilidad. Se determina la fertilidad del suelo con el objetivo de orientarnos en el calculo de la dosificación de fertilizantes, así como detectar problemas nutricionales. Los parámetros que se determinan en este tipo de análisis son:

Materia orgánica

-Nitrógeno total y nítrico

-Carbono orgánico

-Relación carbono/nitrógeno (C/N)

-Fósforo

-Cationes de cambio

-Capacidad de intercambio cationico (CIC)

-Carbonatos totales

-Caliza activa

-Relaciones de complejo de cambio potasio/magnesio (K/Mg) y calcio/magnesio (Ca/Mg)

Análisis de pasta saturada o extracto saturado. Cuando la muestra de suelo llega al laboratorio es secado, molido, pasa por un tamiz menor de 2 mm. Después de esto se le agrega agua hasta obtener una mezcla homogénea, de esta mezcla con textura a pasta, se obtiene un extracto saturado utilizando un filtro a presión.

A partir de extracto saturado se determinan los siguientes parámetros:

pH

Conductividad eléctrica (CE)

-Macronutrientes minerales como sulfatos, nitratos potasio, fósforo, magnesio, calcio

-Micronutrientes minerales como hierro, zinc, boro, molibdeno, manganeso

-Sodio, cloruros, metales pesados

-Porcentaje de saturación

-Relación de absorción de sodio (RAS)

-Porcentaje de intercambio de sodio (PSI)

¿Cómo tomar muestras de suelo?

Cuando se va a realizar un análisis de suelo en un lugar donde aún no se tiene cultivo, se debe de abrir un agujero que permita ver el perfil de suelo.

Cuando el objetivo es producir cultivos hortícolas, nos enfocaremos más en los primeros 40-60 cm.

Si se distinguen varios perfiles en ese fragmento analizar cada uno de los perfiles y si solo existe un perfil de suelo, tomar muestras de los primeros 20-40 cm, y otra a los 0-20 cm eliminando los primeros 5 cm de suelo, sería lo ideal.

 

Para frutales se deberá considerar el tamaño de raíz del arbola para realizar el mismo proceso mencionado anteriormente, pero aumentando el tamaño de perfil del suelo.

Esto dependerá de la actividad radicular del frutal, puesto que hay arboles que tienen la mayoría de pelos absorbentes en los primeros 25 cm del suelo.

Cuando el análisis de suelo se realiza en una producción agrícola ya establecida, el muestreo se realiza en el área de suelo cercana a la raíz, y se toma una muestra del suelo que rodea a la raíz del cultivo.

El número de muestras ideal que deben de tomarse son de al menos 10 sub muestras, por cada media hectárea, 20 sub muestras por hectáreas, si se desea realizar el análisis.

Para diagnosticar alguna deficiencia solo se deben de tomar el número de muestras necesarios para la zona donde se observan los síntomas.

aEl número de sub muestras se combina y se mezclan muy bien y de allí se toma la muestra que será enviada al laboratorio.

El análisis de suelos mejora la rentabilidad de la producción agrícola

México es un país exportador de alimentos, con tratados internacionales de libre comercio con un gran número de países. L

La necesidad de incrementar la competitividad agrícola exigida año con año, para competir contra los precios de otros países productores que gracias a los tratados pueden comercializar con México.

Es necesario que México modernice su agricultura e incluya innovación en sus producciones, si bien existe un gran número de empresas con niveles tecnológicos muy altos en su producción agrícola, existe

un número mayor de empresas que no cuentan con estos desarrollos tecnológicas, que permiten una producción más rentable.

Realizar análisis químico del suelo permite una mejor toma de decisiones en el manejo del cultivo, abriendo la posibilidad de incrementar la rentabilidad del cultivo.

Para interpretar el resultado de análisis de suelo es recomendable consultar a un profesional de la agronomia o en su caso consultar los distintos manuales de interpretación de análisis de suelo existentes hoy en día.

 

 

 

 

 

Micronutrientes en las plantas

Son denominados micronutrientes debido a que las plantas los necesita en bajas cantidades, las necesidades son mucho menores que los macronutrientes como el Nitrógeno (N), Fósforo (P) y Potasio (K). Los mircronutrientes son indispensables en el desarrollo de las plantas, su deficiencia provoca deteriores en el desarrollo fisiologicos de las plantas.

Los micronutrientes en las plantas, son elementos que necesitan para realizar sus funciones vitales. Estas funciones dentro de las plantas no pueden ser realizadas por otro elemento, por lo tanto, la ausencia o deficiencia de algún micronutriente provocaría, según el grado de deficiencia, efectos negativos sobre su desarrollo y crecimiento e incluso la muerte de la planta.

Todo elemento de la tabla periódica que sea necesario para el desarrollo de las plantas es denominado nutriente vegetal, estos nutrientes suelen ser aplicados a los cultivos agrícolas intensivos, en forma de fertilizantes. Aquellos elementos que no son necesarios pero su presencia mejora algún proceso de la planta es conocido como elemento benéfico, como es el caso del silicio (Si).

 

¿Cuáles son los micronutrientes en las plantas?

Los micronutrientes son los siguientes elementos: Hierro (Fe), Manganeso (Mn), Zinc (Zn), Cobre (Cu), Boro (B) y Molibdeno (Mo), todos ellos son indispensable para el correcto funcionamiento del metabolismo de las plantas, participan principalmente como constituyentes o activadores de enzimas que catalizan procesos biológicos imprescindibles para la vida de la planta.

Deficiencia de micronutrientes en las plantas

Debido a que la mayoría de micronutrientes en las plantas participan en reacciones enzimaticas, la deficiencias de los micronutrientes afecta reacciones clave para el desarrollo. El hierro (Fe) participa en la síntesis de la clorofila y si el hierro esta deficiente no se lleva a cabo de manera correcta la fotosíntesis, debido a una incorrecta síntesis de la clorofila. El zinc participa en la síntesis de auxinas, la deficiencia de zinc (Zn) provoca una incorrecta formación de auxinas provocando desequilibrios hormonales en la planta, afectando su desarrollo.

Síntomas de deficiencia por micronutrientes

Las hojas suelen ponerse cloróticas (amarilas), plantas raquiticas, pobre crecimiento, enanismo, polen inviable. Los síntomas mas comunes son la clorosis generalizada de las hojas. Existen varios niveles de deficiencia de micronutrientes en las plantas, cuando los síntomas son visibles, en todos los casos se trata de una deficiencia avanzada y que ya esta provocando daños al desarrollo del cultivo. Por este motivo se debe de realizar planes de fertilización preventivos, para evitar las deficiencias de micronutrientes en el cultivo.

Aplicación de micronutrientes en las plantas

En cultivos a cielo abierto, cuando se cuente con un sistema de fertirrigación, es conveniente realizar la aplicación de micronutrientes de manera que se asegura su presencia y disponibilidad para la planta y que su deficiencia no provoque un deterioro del rendimiento que repercutiría también en la rentabilidad de la producción agrícola.

Para cultivos a cielo abierto que no cuenten con sistema de fertirrigación y cuando se desee prevenir o corregir alguna deficiencia el agricultor cuenta con aplicaciones foliares para llegar a su objetivo.

El aporte de micronutientes en las plantas siempre debe considerar los análisis realizados al suelo que determinan la existencia y disponibilidad de cada micronutriente, algunos nutrientes como el Hierro (Fe) puede estar presente en el suelo pero no disponible para la planta. Las condiciones que provocan esto en el Hierro (Fe) son pH altos o muy bajos y alta cantidad de bicarbonatos en suelos, por lo que este nutriente suele agregarse en forma de quelatos al suelo, para facilitar su disponibilidad para la planta. También existen productos comerciales a base de Hierro(Fe) acomplejado con ingredientes orgánicos para aplicaciones foliares, estos ingredientes activos facilitan la absorción del Fierro (Fe) en la planta.

Micronutrientes

Existen productos en el mercado a base de combinaciones que incluyen todos los micronutrientes en forma de quelatos para aplicación al suelo, cuando las aplicaciones se realizan a partir de este tipo de productos las cantidades aplicadas de manera general expresada en partes por millón por cada litro de agua es la siguiente para cada elemento:

Fe 2; Mn 1; Zn 0,4-0,5; B 0,4-0,5; Cu 0,1-0,2; Mo 0,05.

Los productos comerciales suelen venir acompañadas con la dosificación por hectáreas, que van del  kg por hectárea hasta  5 o inclusive más, la decisión final de la cantidad a aportar siempre debe ajustarse a los resultados de análisis de suelo y foliar cuando se cuenten, así como del tipo de cultivo, etapa fenológica, densidad de plantas y genotipo.