Establecer una red de profesionales que fomenten el cooperativismo y el intercambio de información para facilitar la difusión de innovaciones entre los distintos participantes del sector.

AGROPRODUCTORES

Evaluamos las condiciones agro-ecológicas de tu zona y recomendamos un manejo integrado para los cultivos.

Archivo de categoría Fisiología Vegetal

Fosfito de potasio

El fosfito tiene actividad elicitora sobre las plantas, es decir que desencadenan una serie de respuestas que mejoran la respuesta ante ataques de patógenos.

Los fosfitos mejoran la respuesta de las plantas a enfermedades por el proceso conocido como resistencia sistémica adquirida.Los fosfitos son considerados como bionutrientes o bioestimulantes, debido a que estimulan procesos biologicos de las plantas.

En el mercado existen varias fuentes de fosfito, según sea el proceso de su fabricación. La mayoría de fuentes de fosfito en el mercado están formuladas por de la formación de una sal alcalina a partir de ácido fosforoso.

Ficha técnica

Para obtener esta sal (fosfito) suelen utilizarse moléculas con contenido de potasio o calcio, por ello existen fosfito de potasio o fosfito potásico, fosfito de calcio o fosfito cálcico y fosfito de magnesio o fosfito magnésico, todos estos nutrientes son cationes con carga positiva.

Fosfito de potasio (K)

Posee fósforo y potasio en su contenido, el fósforo está en forma de fosfito. El fósforo está en mayor contenido que el de potasio.

Fosfito de calcio (Ca)

Posee fósforo y calcio en su contenido, el fosforo está en forma de fosfito. El fósforo está en mayor contenido que el del calcio.

Fosfito de magnesio (Mg)

Posee fósforo y magnesio en su contenido, el fósforo está en forma de fosfito, el fósforo está en mayor contenido que el magnesio.

Fosfito y fósforo

El fosfito tiene fósforo en su composición, pero estos no poseen iguales efectos sobre la planta. El fósforo es un nutriente esencial para el desarrollo de las plantas superiores, si no existen cantidades adecuadas de fósforo la planta no llevará a cabo correctamente su desarrollo.

El fósforo es absorbido por las plantas en forma de fosfatos inorgánicos, principalmente como anión fosfato monobásico y anión fosfato dibasico, y las plantas los integra a su metabolismo tal como fueron absorbidos.

El fosfito al ser muy parecido a un fosfato es absorbido por el mismo proceso por el cual se absorben los fosfatos, pero al no ser completamente igual que el fosfato este no se integra a metabolismo como un fosfato, el fosfito no es una fuente de fósforo.

Los fosfitos provocan efectos positivos en las plantas, pero no por ser una fuente de fósforo como nutriente, sino más bien, porque los fosfitos provocan un efecto elicitor y mejoran la sanidad de las plantas al provocar el proceso conocido como resistencia sistémica adquirida.

El fosfito posee mayor solubilidad que los fosfatos.

Beneficios agronómicos del fosfito de potasio, de calcio o magnesio

La aplicación de los fosfitos sobre los cultivos provocarían una mejor respuesta de los cultivos a las enfermedades, debido al efecto elicitor, además de la aportación del nutriente que le acompaña, es decir un aporte ya sea de potasio, calcio o magnesio , según sea la fuente de fosfito que se utilice.

 

 

 

Funciones del zinc en las plantas

Las funciones del  zinc en las plantas son amplias, principalmente como componente o activador de un gran número de enzimas indispensables en el desarrollo y reproducción de las plantas. El Zinc participa en la síntesis natural de las auxinas y en el de la clorofila. La deficiencia de zinc (Zn) provoca alteraciones en el desarrollo de las plantas, afectando su rendimiento.

La concentración normal de zinc (Zn) en un análisis foliar en base a materia seca va de un rango de 20 – 100 ppm. Este rango es general y cambia entre cultivo y cultivo. Generalmente valores inferiores a 20 ppm ya muestran síntomas de deficiencia de zinc (Zn).

Funciones del zinc en las plantas

El zinc es indispensable en la formación de proteínas, debido a que forma parte de los ribosomas, lugar donde comienza la síntesis de proteínas.

El cinc también participa en el metabolismo de los carbohidratos, este metabolismo es indispensable para transferencia de energía y aprovechamiento de los fotoasimilados obtenidos de la fotosíntesis.

El zinc es esencial para la síntesis del aminoácido triptófano y éste es el precursor del ácido indol acético o auxinas cuando se sintetizan en la planta. Por este motivo su deficiencia provoca entrenados cortos, y crecimiento raquítico en algunos cultivos como el nogal.

El zinc (Zn) pertenece a los denominados micronutrientes o microelementos que son necesarios en pocas cantidades pero indispensables para el correcto desarrollo de las plantas. Las funciones del zinc en las plantas están estrechamente relacionadas con la actividad auxinica.

Deficiencia de zinc en las plantas

La deficiencia de zinc en las plantas puede ser provocada por ausencia del elemento en el suelo o solución nutritiva.

pH fuera de 5.5-6.5 pueden reducir la disponibilidad del nutriente para la planta. Esto sucede por que el zinc reacciona con compuestos del suelo, como los fosfatos volviéndose insolubles.

Debido a que las funciones del zinc en las plantas son indispensables para su correcto desarrollo y crecimiento es de suma importancia evitar las deficiencias.

Después de la deficiencia de hierro (Fe) esta es una de las deficiencias mas comunes de los micronutrientes. Los suelos salino sódicos, alcalinos, calcáreos y con pH por arriba de 7 suelen presentar baja disponibilidad del zinc para las plantas, provocando deficiencias en la producción agrícola.

Síntomas de deficiencia de cinc (Zn) en las plantas

La deficiencia de zinc en las plantas ocasiona clorosis en las nervaduras de las hojas más jóvenes. Es un amarillamiento de las hojas jóvenes muy parecido a la provocada por la deficiencia de hierro y de manganeso. Y la segunda deficiencia mas frecuente de micronutrientes, después de la hierro. Por lo que para identificar bien la deficiencia se debe verificar que se cumpla los siguientes síntomas:

Un síntoma muy característico de deficiencia de zinc en las plantas es el acortamiento de entrenudos, provocando lo que se denomina arrocetamiento de las plantas.

El arrocetamiento se debe que las funciones del zinc en la planta están sumamente relacionadas con la síntesis de la fitohormona llamada auxina, al ser deficiente el zinc las auxinas no se sintetizan de manera adecuada por lo que existen alteraciones en el desarrollo de la planta  debido a niveles deficientes de auxinas en la planta.

¿Cómo corregir una deficiencia de zinc en las plantas?

Para realizar una corrección eficiente hace falta considerar el tipo de cultivo, de producción, manejo que se le da al cultivo y otras muchas cosas.

Hablando de forma general, suelen realizar aplicaciones foliares o al suelo de fuentes de zinc (Zn) como sulfatos de zinc, o aplicaciones de quelatos o complejos de zinc que suelen ser mucho más efectivos para la corrección que las sales minerales sin quelatar o complejar. Los agentes quelantes mas usuales para quelatar zinc son el EDTA y IDHA.

Se debe buscar corregir los agentes causales de la deficiencia, por lo que en suelos calcáreos, salino sodicos, con pH superiores a 7 lo mas recomendable es el uso de quelatos de zinc. Cuando la deficiencia se da por un carencia real de zinc en el suelo y no por baja disponibilidad, el sulfato de zinc y el oxido de zinc son una buena opción.

Fertilizantes con zinc

Existen varios fertilizantes utilizados para aportar zinc (Zn)  a los cultivos en la producción agrícola. Entre ellos el sulfato de zinc, oxido de zinc y el quelato de zinc. El sulfato de zinc es inestable y puede precipitarse en pH alcalinos (superiores a 7), el quelato de zinc tiene la propiedad de mantenerse disponible sin precipitar en pH alcalino.

Utilizando estas fuentes fertilizantes es posible aportar zinc a las plantas para evitar deficiencias que mermen el rendimiento.

Toxicidad del zinc en las plantas

La toxicidad del zinc provoca una reducción de la masa radicular de las plantas, un crecimiento deficiente, hojas mal expandidas. La fitotoxidad de zinc suele presentarse con valores por encima de 200 ppm o mg por kilogramo en un suelo.

 

 

 

Función del hierro en las plantas

El hierro en las plantas forma parte estructural de mas de 100 enzimas, estas enzimas participan en procesos como fotosíntesis, respiración, absorción de iones, transferencia de energía y la síntesis de la clorofila.  Debido a que el hierro participa en la biosintesis de la clorofila, la deficiencia de este nutriente disminuye la cantidad de clorofila en la planta, lo que observamos como plantas amarillentas.

Es común observar deficiencias de hierro en suelos con abundante contenido del mismo mineral, esto se debe a que el hierro es un elemento muy reactivo, y reacciona con sulfatos, hidróxidos, bicarbonatos, entre otros componentes del suelo.

Cuando el hierro reacciona se vuelve insoluble y por lo tanto no disponible para que las plantas puedan absorberlo.

 

La función del hierro en las plantas es indispensable e insustituible, es uno de los nutrientes esenciales en las plantas, todas las plantas necesitan hierro para su correcto desarrollo y reproducción.

El hierro pertenece al grupo de nutrientes denominados micronutrientes o microelementos, que son indispensables en el ciclo de vida de cualquier planta o cultivo.

Función del hierro en las plantas

El hierro es cofactor de mas de 100 enzimas que catalizan reacciones bioquímicas únicas e indispensables en los procesos como la fotosíntesis, respiración, metabolismo del nitrógeno, y de los sulfatos, juego un papel muy importante en la transferencia de electrones (reacciones de oxido reducción), procesos que forman parte deFunción del hierro (Fe) en las plantas la fotosíntesis.

El hierro tiene la capacidad de ceder y ganar un electrón, lo que se conoce como capacidad redox. Esta cualidad del hierro lo hace participar en un sin números de procesos en las que las reacciones redox son indispensables. Un ejemplo claro, es que el hierro forma parte de algunas enzimas antioxidantes, que participan en la neutralización de radicales libres de oxigeno para evitar daños celulares.

El hierro forma parte de la ferredoxina, que es una proteína que funciona como aceptor de electrones en la cadena de electrones del fotosistema II, parte fundamental para el proceso de fijación de carbono, conocido como fotosíntesis.

Clorosis férrica

El síntoma característico de una deficiencia de hierro en las plantas es una clorosis o amarillamiento intervenal en las hojas, debido a que una de las principales funciones del hierro en las plantas es participar en la síntesis de la clorofila.

El hierro es un elemento poco móvil dentro de las plantas, los síntomas de deficiencia se presentan en las hojas jóvenes. Siendo las hojas jóvenes las que muestren  los síntomas más marcados, como amarillamiento internerval de las hojas.

La clorosis por deficiencia de hierro se caracteriza por ser un amarillamiento entre nervaduras, mientras que las nervaduras son verdes. En comparación con la clorosis por deficiencia de nitrógeno en la que tanto las nervaduras como la sección internerval se tornan amarillas, mostrándose un amarillamiento generalizado de la hoja.

La deficiencias de zinc (Zn) y manganeso (Mn) son parecidas a las provocadas por el hierro (Fe), ya que todas estas se observan como una clorosis en las hojas mas jóvenes. La mas usual en cambio, es la clorosis férrica, debido a que es un elemento muy reactivo en el suelo.

 

Deficiencia de hierro en las plantas

La deficiencia puede provocarse por la ausencia real del hierro en el suelo o en lo solución nutritiva, o por condiciones que limitan la disponibilidad del hierro para la planta. Estos factores pueden ser suelos con elevado pH o bien en soluciones nutritivas con pH por encima de 6.5-7.

Deficiencia de hierro en las plantas

La deficiencia de hierro es común en suelos calcáreos, que suelen tener pH mayores a 7.  El hierro suele reaccionar con otros componentes del suelo.

Cuando el hierro es aplicado en forma de sulfato de hierro u oxido de fierro, estos reaccionan con los fosfatos o el mismo oxígeno, precipitando al hierro, esto impide su solubilidad en el agua y por lo tanto es imposible que la planta lo absorba por medio de la raíz.

Síntomas de deficiencia de hierro en las plantas

Las plantas con deficiencia de hierro suelen mostrar amarilamiento o clorosis, este amarillamiento comienza en las hojas más jóvenes de la planta, es decir en los puntos del crecimiento del cultivo, debido a la poca movilidad del hierro en la planta.

Cuando los síntomas se presenten en hojas adultas, significa que la deficiencia es de grado alto, y ya ha causado severas repercusiones en el desarrollo de la planta.

Clorosis férrica por deficiencia de hierro

¿Cómo corregir una deficiencia de hierro en las plantas?

Para realizar una corrección eficiente hace falta considerar el tipo de cultivo, de producción, manejo que se le da al cultivo y otras muchas cosas. También debe tomarse en cuenta que la principal función del hierro en las plantas es participando en la síntesis de clorofila.

Hablando de forma general, suelen realizar aplicaciones foliares o al suelo de fuentes de hierro como sulfatos de hierro, o aplicaciones de quelatos  o complejos de hierro (Fe) que suelen ser mucho más efectivos para la corrección que las sales minerales sin quelatar o complejar.

Cuando se busque aplicar el riego a través del sistema de riego o en aplicaciones al suelo, la opción mas eficiente es mediante el uso quelatos de hierro (Fe).

Mientras, que cuando se busque realizar aplicaciones foliares, los complejos de hierro son efectivos.

Actualmente el mercado ofrece quelatos de hierro, esta fuente de hierro impide su precipitación en el suelo, y facilita la disponibilidad del hierro para las plantas, evitando problemas de deficiencia. La función del hierro en las plantas es vital por lo que se deben evitar las deficiencias de este nutriente.

Uno de los quelatos más utilizados gracias al amplio rango de estabilidad en pH es el denominado agente quelante EDDHA, otros agentes quelantes utilizados son HBED, EDTA, IDHA, etc.

Para suelos calcáreos, con pH por arriba de 7 y con alto contenido de caliza, lo mas recomendable es usar quelatos de alta estabilidad como HBED, EDDHA y EDDHSA.

En suelos sin problemas de alcalinidad se recomienda usar DTPA, EDTA y IDHA.

La incorporación de ácidos humidifico y especialmente fúlvicos que mejoran la disponibilidad del hierro en los suelos.

Toxicidad del hierro (Fe)

Cuando se aplica una cantidad mayor de hierro al que las plantas necesitan, puede presentarse un efecto toxico en la planta debido al exceso de hierro. Los síntomas de la toxicidad por hierro en las plantas suele verse como un bronceado de las hojas, que evolucionan a manchas de color café.

Algunos investigadores reportan que niveles de 300 a 400 ppm o mg por kilogramo de suelo provocan fitotoxicidad por hierro en la planta.

Los niveles normales de hierro en la plantas en un análisis foliar están en un rango de 50-250 ppm. Este es un promedio general, el contenido varia según la etapa de desarrollo de la planta.

 

 

 

 

 

Extracto de algas marinas en la producción agrícola – Agroproductores

Desde hace mucho tiempo en ciertas zonas del mundo, cercanas a las costas las algas se han utilizado para abonar el suelo, y mejorar las características de este para un buena agricultura.

Actualmente existen extractos de algas comerciales, los cuales provocan ciertos beneficios cuando son aplicadas sobre las plantas. Algunos de los beneficios comprabados científicamente y publicado en una diversidad de revistas científicas a nivel mundial son: mejorar la tolerancia de las plantas antes situaciones de sequía, salinidad, temperaturas muy altas o muy bajas, incrementar los °brix de las frutas, entre otras.

Extractos de algas aplicados al suelo

Cuando los extractos de algas son aplicados al suelo, se mejora la capacidad de retener agua en los suelos, esto debio a un ingrediente activo que la mayoría de algas contiene que es el alginato, el alginato es un polisacárido con apariencia gelatinosa, que permite retener agua por más tiempo, de esta forma también mejora la cantidad de aire en el suelo, evitando muerte de raíces por falta de oxígeno.

Extractos de algas aplicados foliarmente

Las algas no son plantas, pero debido a su parecido con ellas poseen sustancias parecidas a las fitohormonas o hormonas vegetales, estas sustancias son contenidas los extractos de algas, y tiene efecto similar a de las hormonas vegetales cuando son aplicadas sobre las plantas, el efecto suele ser mucho más ligero en comparación con una aplicación química de reguladores de crecimiento, pero su aplicación tiene efecto positivo sobre el desarrollo de plantas.

Existen muchos tipos de algas, cada una con propiedades diferentes y únicas, extracto de alga, según sea la fuente de donde se obtiene tendrá un efecto diferente, hace falta conocer el alga de donde proviene para saber más sobre su efecto, los extractos de algas también contienen vitaminas, carbohidratos y proteínas residuales, que también son de beneficio para las plantas. Debido a que las paredes celulares de las algas poseen gran parecido con los hongos, pueden tener efecto elicitor sobre las plantas, provocando una reacción positiva en el cultivo conocido como SAR.

 

 

 

Micronutrientes en las plantas

Son denominados micronutrientes debido a que las plantas los necesita en bajas cantidades, las necesidades son mucho menores que los macronutrientes como el Nitrógeno (N), Fósforo (P) y Potasio (K). Los mircronutrientes son indispensables en el desarrollo de las plantas, su deficiencia provoca deteriores en el desarrollo fisiologicos de las plantas.

Los micronutrientes en las plantas, son elementos que necesitan para realizar sus funciones vitales. Estas funciones dentro de las plantas no pueden ser realizadas por otro elemento, por lo tanto, la ausencia o deficiencia de algún micronutriente provocaría, según el grado de deficiencia, efectos negativos sobre su desarrollo y crecimiento e incluso la muerte de la planta.

Todo elemento de la tabla periódica que sea necesario para el desarrollo de las plantas es denominado nutriente vegetal, estos nutrientes suelen ser aplicados a los cultivos agrícolas intensivos, en forma de fertilizantes. Aquellos elementos que no son necesarios pero su presencia mejora algún proceso de la planta es conocido como elemento benéfico, como es el caso del silicio (Si).

 

¿Cuáles son los micronutrientes en las plantas?

Los micronutrientes son los siguientes elementos: Hierro (Fe), Manganeso (Mn), Zinc (Zn), Cobre (Cu), Boro (B) y Molibdeno (Mo), todos ellos son indispensable para el correcto funcionamiento del metabolismo de las plantas, participan principalmente como constituyentes o activadores de enzimas que catalizan procesos biológicos imprescindibles para la vida de la planta.

Deficiencia de micronutrientes en las plantas

Debido a que la mayoría de micronutrientes en las plantas participan en reacciones enzimaticas, la deficiencias de los micronutrientes afecta reacciones clave para el desarrollo. El hierro (Fe) participa en la síntesis de la clorofila y si el hierro esta deficiente no se lleva a cabo de manera correcta la fotosíntesis, debido a una incorrecta síntesis de la clorofila. El zinc participa en la síntesis de auxinas, la deficiencia de zinc (Zn) provoca una incorrecta formación de auxinas provocando desequilibrios hormonales en la planta, afectando su desarrollo.

Síntomas de deficiencia por micronutrientes

Las hojas suelen ponerse cloróticas (amarilas), plantas raquiticas, pobre crecimiento, enanismo, polen inviable. Los síntomas mas comunes son la clorosis generalizada de las hojas. Existen varios niveles de deficiencia de micronutrientes en las plantas, cuando los síntomas son visibles, en todos los casos se trata de una deficiencia avanzada y que ya esta provocando daños al desarrollo del cultivo. Por este motivo se debe de realizar planes de fertilización preventivos, para evitar las deficiencias de micronutrientes en el cultivo.

Aplicación de micronutrientes en las plantas

En cultivos a cielo abierto, cuando se cuente con un sistema de fertirrigación, es conveniente realizar la aplicación de micronutrientes de manera que se asegura su presencia y disponibilidad para la planta y que su deficiencia no provoque un deterioro del rendimiento que repercutiría también en la rentabilidad de la producción agrícola.

Para cultivos a cielo abierto que no cuenten con sistema de fertirrigación y cuando se desee prevenir o corregir alguna deficiencia el agricultor cuenta con aplicaciones foliares para llegar a su objetivo.

El aporte de micronutientes en las plantas siempre debe considerar los análisis realizados al suelo que determinan la existencia y disponibilidad de cada micronutriente, algunos nutrientes como el Hierro (Fe) puede estar presente en el suelo pero no disponible para la planta. Las condiciones que provocan esto en el Hierro (Fe) son pH altos o muy bajos y alta cantidad de bicarbonatos en suelos, por lo que este nutriente suele agregarse en forma de quelatos al suelo, para facilitar su disponibilidad para la planta. También existen productos comerciales a base de Hierro(Fe) acomplejado con ingredientes orgánicos para aplicaciones foliares, estos ingredientes activos facilitan la absorción del Fierro (Fe) en la planta.

Micronutrientes

Existen productos en el mercado a base de combinaciones que incluyen todos los micronutrientes en forma de quelatos para aplicación al suelo, cuando las aplicaciones se realizan a partir de este tipo de productos las cantidades aplicadas de manera general expresada en partes por millón por cada litro de agua es la siguiente para cada elemento:

Fe 2; Mn 1; Zn 0,4-0,5; B 0,4-0,5; Cu 0,1-0,2; Mo 0,05.

Los productos comerciales suelen venir acompañadas con la dosificación por hectáreas, que van del  kg por hectárea hasta  5 o inclusive más, la decisión final de la cantidad a aportar siempre debe ajustarse a los resultados de análisis de suelo y foliar cuando se cuenten, así como del tipo de cultivo, etapa fenológica, densidad de plantas y genotipo.

 

 

 

 

Absorción de nutrientes y transporte de agua en las plantas

Absorción de nutrientes y transporte de agua en las plantas

 

Las plantas absorben nutrientes del suelo que están disueltos en el agua, todo aquel nutriente que no sea soluble no estará disponible para la planta debido a que no está disuelto en la solución del suelo.

Absorción de nutrientes en las plantas

La absorción del agua y de los componentes disueltos en ella se realiza través de las raíces. Los iones de nutrientes en el suelo tienen dos clases de movimiento.

a) agitación térmica provocada por las micelas coloidales del suelo, denominado movimiento browniano del suelo.

b) la diferencia de potencias electroquímicos provoca el movimiento de electrolitos según las distintas concentraciones de los mismos.

El mecanismo de absorción de nutrientes y agua a través de la raíz se denomina difusión. Se realiza a través del tejido celular de la raíz, el plasmalesma, esto pasa sobre la superficie de los pelos radiculares de raíces jóvenes.

Las raíces jóvenes poseen un área superficial mayor, lo que incrementa el área de contacto con el exterior mejorando la absorción. Estas raíces jóvenes también poseen membranas celulares especialmente finas y vacuolas de mayor tamaño que en otros órganos de la planta. Es sobre estos pelos radiculares donde se realiza la absorción del agua y de las sustancias disueltas en ella.

La absorción de nutrientes es un proceso de intercambio de cargas electroestáticas sobre la superficie de los pelos radiculares. Los iones son intercambiados entre las posiciones del tejido de la raíz y  la solución del suelo. Esto provoca la absorción de nutrientes y agua hacia el interior de la planta.

La capacidad de intercambio catiónico de la raíz es diferente de especie en especie, podemos hablar de un promedio para monicotiledonas de  10-30 meq 100g-1 sobre materia seca y de 40-100 meq 100g-1 sobre materia seca.

Los cationes en la raíz se intercambian según su valencia por H+ y los anoines por iones OH- y HC3 . Este es el motivo por el cual los desequilibrios en la absorción de cationes acidifican y desequilibrios en la absorción de aniones alcalinizan.

Transporte y nutrición de las plantas

El transporte de nutrientes y agua dentro de la planta se lleva a través del xilema y floema. Existen dos movimientos contrapuestos que permiten el transporte, uno hacia arriba y otro hacia debajo de la planta. El movimiento del agua y los componentes disueltos, de la raíz a las partes superiores de la planta se realiza a través del xilema. El xilema transporta sabia no elaborada, contiene iones de la solución del suelo y compuestos de reducción de nitratos, ya que en algunas especies esto ocurre en la raíz.

Cuando se transporta hacia abajo, de las hojas hacia el resto de los órganos de la planta, las plantas utilizan el floema, a través de este desciende la sabia elaborada con los fotoasimilados creados a partir de la fijación del carbono en la fotosíntesis y contiene diferentes productos originados por el metabolismo secundario, también contiene una pequeña cantidad de nutrientes minerales que serán redistribuidos, en otras partes de la planta.

Absorción de agua en las plantas

El xilema y floema pueden considerarse como el sistema de circulación en las plantas, mediante esta circulación se mantiene un adecuado transporte de agua en las plantas y con ello se distribuyen los componentes que la planta necesita para realizar su metabolismo y mantenerse con vida.

La vía del floema se utiliza cuando se realizan fertilizaciones foliares, los nutrientes son absorbidos a través de la membrana de las células, incorporados al floema y redistribuidos mediante este sistema. Recordemos que todos los nutrientes y compuestos dentro de la planta están disueltos en agua para poder ser transportados.

En sistemas agrícolas intensivos la aplicación de los nutrientes a las plantas, se realiza mediante la utilización de un sistema de riego con el cual se distribuye los fertilizantes que han sido disueltos en el agua de riego (fertirrigación) para abastecer a la plantas los nutrientes que necesita en su ciclo biológico y con ello generar un beneficio económico.

Conocer sobre el proceso de absorción y transporte de nutrientes ayudará a tomar decisiones en el abastecimiento de nutrientes para la planta. Entender que condiciones ambientales favorecen la asimilación o disponibilidad de los diversos nutrientes vegetales.

Factores que afectan la absorción de nutrientes en las plantas

Factores como conductividades altas en la solución del suelo, pH muy bajos o elevados, cantidad de agua disponible, son los principales factores que afectan severamente la absorción de nutrientes por las plantas,  el transporte de nutrientes a través de la misma planta también se ve afectado por estos factores.

Otros factores involucrados son cantidad de nutrientes, relación entre nutrientes, CIC, potencial osmotico del suelo, condiciones atmosféricas, etc.

 

 

Resistencia sistémica adquirida

Las plantas pueden potencializar la respuesta ante un ataque de fitopatogenos, después de un primer ataque, a este efecto se le conoce como resistencia sistemática adquirida, y esto se logra por la activación de la expresión de genes involucrados en la síntesis de fitoalexinas y otras sustancias que ayudan a la planta a neutralizar la infección generada por los diversos fitopatogenos. Actulamente existen elicitores que son ingredientes activos que inducen esta respuesta en las plantas, como el fosfito.

Se ha identificado que si las plantas sobreviven después de algún ataque de patógenos ya sean un hongo, un virus o bacteria, las plantas pueden protegerse en ataques posteriores, es decir desarrollan la resistencia sistémica adquirida.

El primer patógeno infectante o algún daño causado “inmuniza” a la planta contra futuros ataques del mismo patógeno. Esto significa que el primer patógeno infectante o algún daño, indujo la expresión de respuestas de resistencia contra las futuras infecciones de patógenos, generando así la resistencia sistémica inducida.

Esta capacidad de las células para responder ante ataques de patógenos tiene efecto sistémico en toda la planta. A esta respuesta se le dio el nombre de resistencia sistémica adquirida. En las células más lejanas de las partes no infectadas en la planta, la primera respuesta es la producción de proteínas relacionadas a la patogénesis llamadas proteínas PR, las enzimas Beta-1,3 glucanasas, endohidrolas, quitinasas, inhibidores de enzimas como la taumantina, inhibidores de amilasa y proteinasas.  Los genes involucrados en la respuesta en las infecciones primarias se expresan localmente, en el punto de la infección, y también de manera sistémica, es decir en toda la planta. También existen genes que participan en la respuesta, pero que solo son expresadas localmente y no sistémicamente.

En la actualidad existen diferentes tipos de elicitores que permiten activar la resistencia sistémica inducida en distintos cultivos agrícolas, con el objetivo de mejorar la sanidad vegetal, y así disminuir los daños provocados por los distintos patogenos existentes.

Respuesta a las heridas.

Existen estudios que documentan que existe resistencia inducida para insectos predadores en jitomate, tabaco y arabidopsis. Estos estudios muestran que esta resistencia es provocada por la activación de síntesis de inhibidores de proteínas en la planta, estos inactivan la función digestiva de los insectos. Esta sustancia fue llamada factor de inductor inhibidor de proteinasa.

Proceso de la fotosíntesis

La fotosíntesis es un proceso biológico en el cual la energía lumínica es transformada en energía electroquímica. El dióxido de carbono junto al agua reaccionan entre sí por medio de reacciones redox produciendo azúcares y otras sustancias orgánicas al mismo tiempo que se libera oxígeno. El proceso de la fotosíntesis en imprescindible para el desarrollo de las plantas.

El proceso de la fotosíntesis es la manera en la que las plantas transforman la luz en sustancias que le permitirán desarrollarse, florecer, desarrollar frutos y dejar progenie. Químicamente el producto final de la fotosíntesis es una hexosa (un azúcar simple), que se origina a partir de una triosa, siendo la glucosa la que se produce  en mayor cantidad y llamada por muchos autores fotosintato o fotoasimilado.

¿En qué consiste el proceso de la fotosíntesis?

Todo este proceso comienza en los pigmentos de la planta. Un pigmento es una sustancia que absorbe la luz en alguna longitud de onda y reflejan el color de longitud de onda que no absorben, en las plantas existen dos tipos de pigmentos las clorofilas y los carotenoide, siendo la mas importante la clorofila que refleja el color verde característico de las plantas.

¿Como ocurre la fotosíntesis?

El proceso de la fotosíntesis se lleva a cabo en orgánulos celulares llamados cloroplastos, aqui encontraremos los elementos que conformar al aparato fotosintético, fotosistema I y fotosistema II.

El fotosistema II esta implicado en la transferencia de electrones y iones de hidrógeno. Aquí se lleva a cabo la cadena de electrones y la fotolisis del agua, este proceso fisiológico es de suma importancia agronómica, ya que, de verse afectado, tendría repercusiones en el rendimiento de la producción, así como en la calidad de las mismas.

Factores que afectan al proceso de la fotosíntesis

El proceso de la fotosíntesis  suele verse afectado por situaciones de estrés abiótico, como pueden ser salinidad en el suelo o agua, altas temperaturas, temperaturas bajas, y de congelamiento, granizo, sequías, radiación excesiva y otros factores climáticos. Cuando alguna de estas condiciones se presenta en el cultivo, la cadena de electrones se ve alterada y se producen especies reactivas de oxígeno, como agua oxigenada, esto provoca la hiperoxidación de los componentes celulares y provoca en ocasiones la muerte de la célula, o en su caso disminuye la eficiencia de la misma, cosa que se verá reflejado en la rentabilidad del cultivo.

Después de este y otros muchos procesos se produce la fijación del carbono, que da como resultado una triosas fosfato

El producto obtenido del proceso fotosintetico, sera utilizado para la síntesis de sacarosa y almidón, que son los principales carbohidratos de la fotosíntesis y que se almacenaran en los tallos de las plantas. Estos productos utilizados en el desarrollo de la plantas como fuente de energía para realizar la floración y el desarrollo de frutos que serán comercializados en la producción agrícola.

 

 

¿Que es el floema? – Fisiología Vegetal

El floema junto al xilema constituyen el sistema vascular de las plantas, este sistema es el encargado de distribuir el agua y las sustancias necesarias para su desarrollo, crecimiento y defensa por todas las células que componen a la planta.  El floema y xilema son sistemas de conducción, en la xilema se transporta agua y los elementos minerales disueltas en ella, y en el floema se transporta agua con sacarosa y algunas otras sustancias.

¿Que es el floema y para que sirve?

El agua que es absorbida por las raíces es transportada hacia la parte superior de la planta a través del xilema hasta llegar a las hojas, mientras que las moléculas sintetizadas a través de la fotosíntesis son transportada a las diferentes zonas de demanda desde las hojas a través del floema. Es decir que cuando las raíces necesitan de energía proporcionada por los azucares sintetizados durante la fotosíntesis esta baja hasta ellas mediante el floema.

El xilema está compuesto por la madera, que son células muerta, ya especializadas para cumplir todas las funciones que desempeña el xilema, mientras que el floema está en la corteza localizado en la corteza de los árboles, y está constituido de células vivas.

¿Que es el floema y cual es su estructura?

Esta compuesto por células vivas, llamadas células cribosas (en gimnospermas), elementos de los tubos cribosos (en angiospermas) células del parénquima, y en ocasiones fibras floemáticas (células muertas).

Sustancias transportadas por el floema

Transporta sabia elaborada con los productos o subproductos de la fotosíntesis. ¿Que es el floema? un sistema conductor de los vegetales que transporta savia elaborada.

Carbohidratos.

Constituyen cerca del 90% del peso seco que se transporta en el floema, en la mayoría de especies vegetales, la sacarosa es el carbohidrato mas abundante transportado, pero no la única, también están el manitol, sorbitol, polialcoholes, dulcitol, estaquiosa, entre muchas otras.

Compuestos nitrogenados.

Son en su mayoría aminoácidos, que se encuentran en menos concentraciones que los carbohidratos, algunos aminoácidos transportados son asparagina, glutamina, glicina, triptófano, proteínas del tipo HSPs, y muchos más.

Ácidos orgánicos.

Solo constituyen una mínima parte de las sustancias transportadas por el floema, destacan el alfa-cetoglutamico, pirúvico, málico, cítrico, fumárico y tartárico.

Nutrientes inorgánicos

Algunos nutrientes son trasportados por esta vía cuando acceden a la planta a través de la cutícula, por la aplicación de nutrientes vía foliar. Cuando esto sucede se redistribuyen a otros órganos.

Fitohormonas.

De esta manera las fitohormonas como auxinas, giberelinas, citocininas, etileno, jazmonatos y el resto de fitohormonas de las plantas son translocadas hacia toda la planta. Este proceso es de suma importancia para el crecimiento y respuesta de la planta ante estímulos externos.

Otras sustancias.

Estudios han demostrado la presencia de vitaminas como tiamina, ácido ascórbico y otros más; ATP, ácido ribonucleico, lípidos, esteroides, fungicidas, herbicidas, insecticidas, reguladores del crecimiento sintéticos, etc.

 

 

Nutrición Foliar

Las plantas pueden fertilizarse suplementariamente a través de las hojas mediante aplicaciones de sales solubles en agua, de una manera más rápida que por el método de aplicación al suelo. Los nutrimentos penetran en las hojas a través de los estomas que se encuentran en el haz o envés de las hojas y también a través de espacios submicroscópicos denominados ectodesmos en las hojas y al dilatarse la cutícula de las hojas se producen espacios vacíos que permiten la penetración de nutrientes. Los nutrientes se absorben por las hojas con una velocidad notablemente diferente.

El nitrógeno se destaca por su rapidez de absorción necesitando de 0,5 a 2 horas para que el 50% de lo aplicado penetre en la planta. Los demás elementos requieren tiempos diferentes y se destaca el fósforo por su lenta absorción, requiriendo hasta 10 días para que el 50% sea absorbido. En el Cuadro 1, se detallan tiempos de absorción de algunos nutrimentos importantes.

Una vez que se ha realizado la absorción, las sustancias nutritivas se mueven dentro de la planta utilizando varias vías: a) la corriente de transpiración vía xilema, b) las paredes celulares, c) el floema y otras células vivas y d) los espacios intercelulares. La principal vía de translocación de nutrimentos aplicados al follaje es el floema. El movimiento de célula a célula ocurre a través del protoplasma, por las paredes o espacios intercelulares. El movimiento por el floema se inicia desde la hoja donde se absorben y sintetizan los compuestos orgánicos, hacia los lugares donde se utilizan o almacenan dichos compuestos. En consecuencia, las soluciones aplicadas al follaje no se moverán hacia otras estructuras de la planta hasta tanto no se produzca movimiento de sustancias orgánicas producto de la fotosíntesis

Cuadro 1.

Velocidad de absorción foliar para fertilizantes foliares

Nutriente    Tiempo para que se absorba el 50% del producto

N (urea)             0,5 – 2 h

P                          5- 10 días

K                          10-24 h

Ca                      1-2 días

Mg                  2-5 h S 8 días

Mn                       1-2 días

Zn                          1-2 días

Mo                       10-20 días

Fe                        10-20 días

 

Tomado de Bertsch, 1995.

Fertilización foliar

La fertilización foliar por lo general se realiza para corregir deficiencias de elementos menores. En el caso de macronutrimentos tales como el nitrógeno, fósforo y el potasio, se reconoce que la fertilización foliar solo puede complementar, pero en ningún momento sustituir la fertilización al suelo. Esto se debe a que las dosis a aplicar vía foliar son muy pequeñas en comparación con las dosis aplicadas al suelo para obtener buenos rendimientos. En el Cuadro 2, se detallan algunas tolerancias de concentraciones de fertilizantes foliares.

Aún cuando la fertilización foliar es complementaria, existen condiciones bajo las cuales los fertilizantes foliares permiten obtener buenos resultados agronómicos. Estas situaciones especiales son aquellas que resultan en limitantes para la nutrición mineral de la planta debido a problemas del sistema radical.

La sequía es la primera de ellas y se produce cuando el suministro de agua es deficiente, afectando la alimentación radicular y produciendo trastornos severos en el desarrollo vegetal. Bajo esta situación, la absorción radical de nutrimentos es limitado y será necesario utilizar entre tanto, la vía foliar, mediante la aplicación de fertilizantes foliares.

Contrario a la falta de agua, el exceso o encharcamiento produce poca disponibilidad de oxígeno en el medio radicular inhibiendo de forma inmediata la absorción de agua y nutrimentos por la planta, siendo la fertilización foliar una alternativa para nutrir a la planta, debido a que durante las inundaciones se produce una falta de oxigeno en las raíces, que provoca la muerte de estas, disminuyendo la capacidad de absorción de nutrientes del suelo.

Las aplicaciones de agroquimicos tales como herbicidas, insecticidas, nematicidas o fungicidas producen inicialmente un efecto esterilizante en el suelo, disminuyendo la absorción de nitrógeno, fósforo y potasio principalmente en estados iniciales de desarrollo del cultivo. La aplicación de nutrimentos vía foliar, permitirá restaurar el adecuado balance nutricional en la planta.

En la practica, la fertilización foliar consiste en aportar nutrientes a las plantas asperjando los nutrientes o fertilizantes disueltos en agua sobre las hojas de las plantas. Las plantas son capaces de absorber nutrientes a través de sus hojas e incorporarlos a su metabolismo.

 

Cuadro 2.

Tolerancia de concentración de nutrimentos en aplicaciones foliares

Nutrimento     Fertilizante                                                                         Kg/400 L agua (*)

Nitrógeno       Urea                                                                                         3-5

NH4NO3, (NH4)2HPO4, (NH4)2SO4                                                                 2-3

NH4Cl, NH4H2PO                                                                                         2-3

Fósforo           H3PO4, otros (ver N)                                                             1,5 – 2,5

Potasio           KNO3, K2SO4, KCl                                                                      3-5

Calcio             CaCl2, Ca(NO3) 2                                                                        3-6

Magnesio      MgSO4, Mg(NO3) 2                                                                   3-12

Hierro            FeSO4                                                                                          2-12

Manganeso  MnSO4                                                                                          2-3

Zinc                ZnSO4                                                                                      1,5-2,5

Boro              Sodio borato                                                                              0,25-1

Molibdeno Sodio molibdeno                                                                         0,1-0,15

(*) 400 L, cantidad suficiente para 1 ha de cultivo.

Tomado de Fageria, et al. 1997

 

Los daños causados por heladas son por lo general la pérdida de follaje, las aplicaciones de nitrógeno ayudan a restaurar el área foliar afectada y se ha indicado que el potasio aplicado foliarmente en forma preventiva, puede atenuar los daños por el frío. La salinidad de los suelos es otro factor que afecta la absorción de agua nutrimentos por la planta.

Las sales aumentan la succión osmótica de la humedad del suelo, lo cual aumenta la retención de agua en el suelo, y como consecuencia afecta el movimiento de nutrimentos del suelo a la planta. Por otra parte, altas concentraciones de sodio provocan el bloqueo de la absorción de cationes importantes tales como el calcio, magnesio y potasio.

Por esta razón, el uso de fertilizantes al suelo puede restringirse y la fertilización foliar puede ser una alternativa beneficiosa. Los desbalances entre cationes y aniones en el suelo, pueden provocar deficiencia de alguno de ellos en la planta y la fertilización foliar puede constituirse en una herramienta efectiva para complementar la falta de ese nutrimento.

Un pobre desarrollo radical producto de problemas por toxicidad de aluminio, por compactación de suelo o por un nivel freático muy alto, son otros de los factores que afectan la absorción de nutrimentos por la planta y convierten a la fertilización foliar en un medio importante para complementar la nutrición mineral de los cultivos.

En el mercado existen diversos fertilizantes foliares, cada uno con un perfil de ingredientes activos y nutrientes diferentes, lo que la elección de alguno de ellos dependerá de la necesidad que busquemos atender.