Dirección

Zapopan, Jalisco, México

Celular/Whatsapp

332-832-0717 y 331-830-8731

Correo electrónico

contacto@agroproductores.com

Horarios de atención

9:00 hrs - 18:00 hrs.

AGROPRODUCTORES

Evaluamos las condiciones agro-ecológicas de tu zona y recomendamos un manejo integrado para los cultivos.

Archivo de categoría Fertilización Foliar

Laboratorios para análisis foliar

Laboratorios y análisis agrícolas en México

Laboratorios agrícolas en México

Los laboratorios agrícolas ofrecen servicios como: análisis de agua, análisis de solución nutritiva, análisis de solución madre, análisis de suelo, análisis de extracto de pasta saturada, análisis de raíz para determinar reservas, y muchos más.

Laboratorios agrícolas en México

En México existen muchas opciones de laboratorios agrícolas privados como institucionales pertenecientes a universidades o centros de investigación.

En la mayoría de ellos, cuando no están cerca de la producción agrícola las muestras se pueden enviar a través de paquetería para su análisis. Antes de realizar cualquier análisis agrícola es recomendable hablar con el laboratorio para que se indique el método de muestreo y los requerimientos especiales para el envío de la muestra.

En la química agrícola se usan diversas unidades de medición, como son partes por millón (ppm), miliequivalntes (meq), porcentaje peso/peso, porcentaje peso/volumen y muchas otras más, por lo que es necesario solicitar que los valores se expresen un unidades que sepamos analizar.

Análisis foliar

Análisis de agua

Estos análisis tienen la finalidad de brindar información sobre el contenido mineral y orgánico del agua de riego. Los parámetros en este análisis son indicadores para conocer lo que se denomina calidad del agua. Esta información permite tomar decisiones en la dosificación de fertilizantes, uso de acondicionadores de agua (ácidos), entre otros, alguicidas, etc.

En algunos laboratorios agrícolas este análisis se divide en dos, el de contenido de minerales que determina exclusivamente minerales y otro de microrganismos para determinar la microbiota del agua.

Para tomar un análisis de agua es necesario sumergir un recipiente hasta la parte media del cuerpo de agua. Es importante no tomar la muestra de la parte superior del cuerpo de agua, ni de la parte inferior por que la muestra puede no ser representativa. Es importante confirmar con el laboratorio la metodología de muestreo.

Análisis de solución nutritiva

El análisis de solución nutritiva permite conocer el contenido de nutrientes/fertilizantes disponibles para ser absorbidos por las raíces. Es muy utilizado en la hidroponía y el fertirriego para tomar decisiones en la dosificación de fertilizantes.

Las muestras para un análisis de solución nutritiva suelen tomarse en gotero, pues de esta manera conocemos los nutrientes que están saliendo a través del sistema de riego.

Análisis de agua, solución madre y solución nutritiva

Análisis de solución madre

El análisis de solución madre permite conocer el contenido de nutrientes/fertilizantes en el tanque con la concentración de fertilizantes. Permite identificar los nutrientes en el tanque concentrado para calcular la dosificación a diluir en el agua de riego para obtener la solución nutritiva que cae en gotero. Es muy utilizado en la hidroponía y el fertirriego para tomar decisiones en la dosificación de fertilizantes.

La muestra para realizar el análisis de solución madre suele tomarse de los tanques de concentración para determinar que el contenido nutrimental sea el buscado.

Análisis de suelo

El análisis de suelo permite conocer el estado del suelo, brinda valores importantes como densidad real, densidad aparente, capacidad de campo, tipo de suelo, contenido por granulometría, contenido de caliza, contenido de materia orgánica.

No es bueno para determinar nutrientes disponibles para que las plantas las absorban por el tipo de metodología utilizado en la determinación. Para calcular la cantidad de nutrientes disponibles para la planta se recomienda el extracto de pasta saturado.

La muestra para un análisis de suelo debe ser representativa de la parcela a evaluar, se recomienda una muestra compuestas de al menos 25 submuestras por hectárea.

Extracto de pasta saturada

Este análisis proviene de la solución formada entre suelo y agua, es decir se analiza la parte soluble del suelo, también denominada solución del suelo. Este análisis permite conocer la cantidad de nutrientes disueltos en el agua del suelo y por lo tanto disponibles para ser absorbidos con las plantas.

La muestra corresponde al suelo que debe ser representativa de la parcela a analizar, se recomienda una muestra compuesta de almenos 25 submuestras por hectarea.

Análisis de fertilizantes

Permite conocer la concentración de nutrientes y elementos en los fertilizantes, pude realizarse en fertilizantes líquidos o sólidos, en fertilizantes orgánicos y fertilizantes minerales. El valor se puede expresar en porcentaje peso/peso, porcentaje peso/volumen, gramos por litro, gramos por kilogramo, etc.

La muestra de un análisis de fertilizantes es el fertilizante en a analizar completamente sellado.

Análisis de arginina en raíces o ramas

El análisis de arginina en raíces permite conocer las reservas de nitrógeno de los cultivos con un periodo de dormancia, como; vid, durazno, nogal, entre otros. Estas reservas son importantes porque son utilizadas durante la brotación del próximo ciclo.

Análisis almidón en raíces o ramas

El análisis de almidón en raíces o ramas permite conocer las reservas de carbohidratos en arboles con periodo de dormancia. Estas reservas son importantes por que son utilizadas durante la brotación del próximo ciclo.

Análisis de contenido de metales pesados

El análisis de metales pesado permite conocer si una muestra liquida o solida contiene algún metal pesado y que cantidad. Incluye las referencias permitidas según el tipo de metal.

Análisis de microorganismos benéficos

Este análisis muestra los microorganismos que están habitando la muestra analizada. Es útil para evaluar la colonización de microorganismos benéficos en suelos y sustratos. Este tipo de análisis puede determinar microorganismos benéficos o patógenos.

Análisis en laboratorios agrícolas de México

Análisis de límites máximos de residualidad

Estos análisis permiten determinar si existen moléculas de determinada clase en la planta. Es muy importante para asegurarse que las moléculas utilizadas en protección de cultivos no revesen el límite máximo de residualidad establecido.

Análisis de contenido de solidos solubles totales (°Brix)

Este tipo de análisis es muy utilizado para determinar el contenido de azúcares en fruta. Este análisis contiene información como el contenido de solidos solubles totales expresado como °brix, y el contenido de diferentes azúcares como fructuosa, glucosa, sacarosa, etc.

Análisis foliar

El análisis foliar permite conocer el estado nutricional de la planta al proporcionar el contenido y concentración de los diferentes nutrientes necesarios para el correcto desarrollo de la planta.

Para conocer el estado de la planta se tienen referencias de concentración foliar bibliográficas o mejor aún se realiza un historial periódico con una muestra representativa de plantas.

Análisis de fitopatogenos

El análisis de fitopatogenos determina que tipo de bacteria, hongo, virus, micoplasma o microorganismo esta provocando un daño ya identificado en el cultivo.

Análisis de aminoácidos libres y no libres

El análisis de aminoácidos libres determina la cantidad de aminoácidos libres presentes en una muestra. También puede determinar que aminoácidos y en que cantidad están presentes.

Este análisis también incluye el contenido de aminoácidos no libres, que nunca es menor al de aminoácidos libres.

La mayoría de laboratorios solo ofrecen el conteo de los 20 aminoácidos esenciales y es muy difícil y caro encontrar laboratorios que ofrezcan la determinación de un amplio aminograma de aminoácidos vegetales.

Lista de laboratorios agrícolas en México

Universidad Chapingo

AGQ labs

Phytomonitor

Fertilab

CIATEJ

FYPA

Quimia

SGS

Universidad Antonio Narro

ICAMEX

Masterlab

Cesavep

Universidad de Guadalajara

ECOSUR

EUROFINS

Análisis foliar

Fertilizantes nitrogenados

Los fertilizantes nitrogenados pueden clasificarse en tres formas: nitrógeno ureico, nitrógeno amoniacal y nitrógeno nítrico.

El nitrógeno es un elemento esencial para el correcto desarrollo fisiológico de las plantas. Pertenece al grupo de nutrientes denominados macronutrientes, debido a que es consumido en abundantes cantidades durante su desarrollo.

El nitrógeno es un constituyente estructural de muchas enzimas en las plantas, forma parte de los aminoácidos, proteínas, enzimas, clorofila, entre muchos otros. Fertilizantes nitrogenados: Nitrógeno necesario para la clorofila

Nitrógeno – Urea (-COO(NH2)2

La molécula de urea no posee carga eléctrica. Cuando la urea entra en contacto con el suelo rápidamente se transforma en amonio (NH4+) y dióxido de carbono (CO2). Esto regularmente toma de 24 a 48 horas. En la transformación de la urea a amonio y dióxido de carbono interviene una enzima denominada ureasa, que está presente en casi todos los suelos.

La interacción del amonio derivado de la urea con el agua provoca la formación de hidróxido de amonio, lo que disminuye el pH en un área localizada.

Cuando el nitrógeno se aporta así a la producción agrícola existe una alta perdida de nitrógeno por volatilización. Los factores que influyen en la volatilización son la CIC, el pH del suelo, contenido de bicarbonatos y la humedad del suelo.

Nitrógeno – Amoniacal (NH4+)

El amonio es una molécula con carga positiva (catión), lo que significa que es retenido en el suelo por las arcillas de carga negativa. Otros nutrientes con carga positiva como el calcio (Ca) y magnesio (Mg) también son retenidos por arcillas de carga negativa.

El amonio puede desplazar al calcio y en menor medida al magnesio del complejo de cambio. En pocos días el amonio (NH4+) es oxidado por las bacterias del suelo y transformado a nitrato (NO3)

El amonio es toxico para las plantas en grandes cantidades, algunas especies son más susceptibles que otras, por lo que este factor nunca debe pasarse por alto.

Algunos fertilizantes nitrogenados con nitrógeno amoniacal con: nitrato de amonio y fosfato de amonio.

Nitrógeno – Nitrato (NO3)

Fertilizantes nitrogenados de larga duraciónEl nitrato posee una carga negativa (anión), por este motivo no puede unirse a las partículas de arcilla como el amonio. El amonio tiene un gran poder oxidativo, por lo que reacciona fácilmente con nutrientes como el hierro.

Los microorganismos del suelo aprovechan el oxígeno del nitrato para respirar, y con ello provocan una disminución de oxígeno en el área radicular, pudiéndose provocar desnitrificación de los suelos.

Algunos fertilizantes nitrogenados con nitrógeno en forma de nitratos son: nitrato de amonio, nitrato de potasio, nitrato de calcio, nitrato de magnesio, entre otros.

¿Qué tipo de nitrógeno debo aplicar a mi cultivo?

Pudrición apical desbalance Ca

Los aplicaciones excesivas de fuentes amoniacales durante el desarrollo del fruto puede provocar desbalances nutricionales del calcio.

En esta decisión tienen que considerase factores como tipo de cultivo, edad del cultivo, clima de la región, tipos de suelos, disponibilidad de agua, así como de fertilizantes.

Se debe de considerar la susceptibilidad del cultivo al amonio.

Cuando se usa amonio como fuente de nitrógeno, las cantidades de magnesio (Mg) y calcio (Ca) en la planta ser reducen, y se observan concentraciones más altas de estos mismos elementos cuando la fuente es nitrato.

Eso indica que es preferible utilizar fuentes amoniacales de nitrógeno durante el desarrollo vegetativo de la planta y utilizar fuentes nítricas o nitrógeno en forma de nitrato para la etapa de desarrollo de frutos.

Especialmente en cultivos como tomate y pimiento, en donde desbalances nutricionales en el calcio, provocados por el nitrógeno amoniacal provocan la fisiopatia conocida como pudrición apical o blossom end rot (BER).

 

Reguladores del crecimiento vegetal

Funciones del nitrógeno en las plantas

Una de las principales funciones del nitrógeno en las plantas es la de ser constituyente estructural de un sin número de componentes celulares como aminoácidos, péptidos, polipéptidos, proteínas, enzimas, coenzimas, nucleótidos, amidas, clorofila entre muchos otros.

El nitrógeno participa en los siguientes procesos biológicos realizados por la planta: absorción de iones, respiración celular, fotosíntesis, síntesis biológica, división y diferenciación celular, y en general en todo el metabolismo. Esto indica la indispensable necesidad de abastecer con las cantidades adecuadas de nitrógeno a las plantas de una producción agrícola.Funciones del nitrógeno en las plantas

Síntomas de deficiencia de nitrógeno (N) en las plantas

Los síntomas de deficiencia de nitrógeno en las plantas comienzan a observarse en las hojas más viejas de la planta como un amarillamiento generalizado delas hojas y nervaduras. Esto se debe a que es un nutriente móvil, en condiciones de deficiencia la planta transportará el nitrógeno a los puntos de mayor necesidad como las hojas en desarrollo. Este movimiento de nitrógeno provoca que los sistemas se observen en las hojas más viejas de la planta.

Deficiencias de nitrógeno (N)

El nitrógeno participa en la síntesis de clorofila en las plantasLas deficiencias de nitrógeno (N) provocan plantas débiles, de poco crecimiento. El crecimiento radicular disminuye notablemente. La planta se vuelve más susceptible de enfermedades al verse afectado el metabolismo de forma generalizada.

La clorosis provocada por deficiencia de nitrógeno se caracterizan por un amarillamiento generalizado de las hojas viejas. Es decir, se observa nervaduras y entre nervaduras amarillas. En comparación con la clorosis provocada por hierro (Fe), zinc (Zn) y manganeso (Mn) que se presenta como un amarillamiento entre nervaduras de las hojas más jóvenes. En este tipo de clorosis las nervaduras se observan color verde.

En deficiencias avanzadas las hojas comienzan a necrosarse y senescen prematuramente. La planta pierde vigor y el rendimiento cae considerablemente. La deficiencia de nitrógeno (N) trae consigo graves repercusiones en el rendimiento del cultivo en cualquier etapa en la que se presente. Debido a que las funciones del nitrógeno en las plantas son básicamente en todo el metabolismo, deficiencias de este elemento traen graves repercusiones en el desarrollo fisiológico de la planta.

¿Por qué ocurren las deficiencias de nitrógeno (N) en las plantas?

Suelos en los que se ha realizado agricultura intensiva durante muchos años son susceptibles de deficiencias de nitrógeno debido al agotamiento del mismo. En estos casos se recomienda aportar nitrógeno al suelo, en cualquiera de sus formas, amoniacal, nítrica o alguna forma orgánica como en abonos verdes o aporte de estiércol.

La lixiviación en suelos arenosos y pobres en materia orgánica es frecuente. La disponibilidad del nitrógeno será distinta depende de en cuál de sus dos principales fuentes se encuentre, nítrico o amoniacal. El nitrógeno amoniacal es rápidamente asimilable por la planta, pero se gasifica rápidamente con las evidentes perdidas, en cambio el nitrógeno nítrico se libera más lentamente para la planta evitando perdidas por gasificación.

 

Análisis foliar

Funciones del manganeso (Mn) en las plantas

El manganeso es un micronutriente esencial para el desarrollo de las plantas, participa en varios procesos enzimáticos y de óxido – reducción. Los síntomas de deficiencia se observan en las hojas más jóvenes como una clorosis internerval, síntomas muy similares a los de hierro y zinc.

Algunas de las funciones del manganeso en las plantas  es como activador de una variedad de enzimas. Estas enzimas participan en los procesos de absorción de iones, fotosíntesis, respiración, síntesis de proteínas y control hormonal.

El manganeso forma parte de la enzima llamada manganeso proteínas del fotosistema II, que es indispensable para el proceso de fotosíntesis. Además de ser parte de la enzima superoxido dismutasa (Mn-SOD). LA enzima Mn-SOD participa en la neutralización de radicales libres que se generan dentro de la celula vegetal.

Los valores normales de manganeso (Mn) en una análisis foliar en base a materias seca esta en el rango de 20 a 300 ppm. Plantas con niveles por debajo de 20 ppm suelen mostrar síntomas de deficiencia de este nutriente.

Síntomas de deficiencia de manganeso en las plantas

Síntomas de deficiencia de manganeso (Mn)

Las hojas más jóvenes se tornan amarillas entre las nervaduras, se presenta una clorosis muy similar a las provocadas por deficiencias de hierro o de zinc.

Deficiencias de manganeso (Mn) en plantas

Las deficiencias de Mn en la planta reducen la actividad fotosintética, al alterarse la síntesis de proteínas la planta se vuelve más susceptible de daños por factores bióticos o abióticos. Las funciones del manganeso en las plantas están muy ligadas al proceso fotosintetico, esto provoca que sus deficiencias disminuyen la fijación de dióxido de carbono debido a una mala fotosíntesis.

Es estado energético de la planta se ve afectado debido a alteraciones en la respiración celular. Esta no puede llevarse a cabo adecuadamente debido a las deficiencias de Mn.

¿Por qué ocurren las deficiencias de manganeso (Mn) en las plantas?

Clorosis por deficiencia de manganesoEl alto contenido de materia seca puede dejar bloqueado al manganeso haciéndolo no disponible para la planta. Este tipo de bloqueo se agrava cuando los ambientes son secos y la mineralización de la materia orgánica es lenta.

El pH limita la disponibilidad del manganeso para las plantas, la disponibilidad de este nutriente disminuye a medida que se incrementa el pH. Este nutriente no presenta problemas de absorción a pH de 5.5-6.5. pH debajo de 5 presentan problemas de disponibilidad de manganeso para las plantas.

Cultivos muy demandantes de manganeso(Mn)

Existen algunas plantas que son muy exigentes de este nutriente, entre ellas se encuentra la soya, el manzano, cerezo, limón, naranja, mandarina, toronja, limón, limón persa, avena y betabel.

 

 

Nutrientes esenciales para las plantas

Nutrientes esenciales para las plantas

Hoy en día se consideran únicamente 17 elementos como esenciales para el normal desarrollo de las plantas. En ausencia de cualquiera de uno de estos elementos, las plantas no podrían desarrollarse normalmente.importancia de los nutrientes en las plantas

Los criterios que un elemento debe cumplir para ser considerado un nutriente esencial son los siguientes:

  1. Cuando cualquiera de uno de estos elementos haga falta la planta no podrá desarrollarse normalmente.
  2. Los síntomas de deficiencia solo se corregirán cuando la planta se abastece con el elemento correspondiente, nunca se podrá sustituir con otro elemento.
  3. Las funciones de cada nutriente esencial sobre el metabolismo de las plantas deben ser conocidos.
  4. El nutriente esencial deber tener una acción directa en la nutrición de la planta, lo que significa que no debe actuar a través de variaciones en el substrato.

Estos criterios fueron establecidos por Arnon y Stout en 1939

Existen 17 elementos esenciales para las plantas

Funciones de los nutrientes en las plantasDe acuerdo a estos criterios, se consideran nutrientes esenciales las plantas los el carbono (C), hidrogeno (H), oxigeno (O), nitrógeno (N), fósforo (P), potasio (K), azufre (S), calcio (Ca), magnesio (Mg), hierro (Fe), manganeso (Mn), cobre (Cu), zinc (Zn), boro (B), molibdeno (Mo), níquel (Ni) y cloro (Cl).

Estos elementos deben estar disueltos en la solución del suelo para ser absorbidos por las plantas a través de sus raíces y llevar a cabo un desarrollo fisiológico normal.

Clasificación de los nutrientes esenciales para las plantas

Los nutrientes esenciales para las plantas pueden clasificarse por la cantidad en las que las plantas lo necesitan.

Macronutrientes

El oxígeno (O), carbono (C), nitrógeno (N), fosforo (P), potasio (K), azufre (S), calcio (Ca) y magnesio (Mg), son considerados macronutrientes de las plantas debido a que su concentración en tejido vegetal seco (análisis foliar) es mayor a 1,000 ppm o lo que es igual 1,000 mg por cada kilogramo.

Micronutrientes

El cloro (Cl), hierro (Fe), manganeso (Mn), cobre (Cu), boro (B), molibdeno (Mo), zinc (Zn), níquel (Ni) son considerados micronutrientes.

Funciones de los nutrientes esenciales para las plantas y su función

Cada nutriente esencial tiene funciones específicas sobre el metabolismo de las plantas, y la función entre ellos varía considerablemente. Todos y cada uno de los nutrientes tienen papel esencial en algún proceso del desarrollo. Ya sea como parte de una enzima, activadores de enzima o como parte de un metabolito.Nutrientes para plantas

Esta diversidad de funciones puede ser clasificada en los tres grupos que abajo se mencionan.

Nutriente estructural

Elementos que forman parte de alguna molécula orgánica sintetizada por la planta como:

Nitrógeno (N) forma parte de aminoácidos, péptidos, polipéptidos, proteínas.

Calcio (Ca) forma parte del pectato que se encuentra en la pared celular.

Magnesio (Mg) forma parte estructural del centro de la molécula de clorofila.

Fósforo (P) forma parte de los ácidos nucleótidos, nucleótidos y moléculas de ATP.

Nutriente constituyente de enzima

Estos nutrientes forman parte de algunas enzimas, y que son esenciales para su funcionamiento como:

Molibdeno (Mo) forma parte de muchas enzimas que son esenciales para el desarrollo de la planta, como la nitrato reductasa.

Hierro (Fe) forma parte de muchas enzimas que participan en la síntesis de clorofila.

Nutriente de transporte y regulación osmótica.

El nutriente forma enlaces débiles con moléculas orgánicas de peso molecular reducido. Esto favorece la movilidad de las moléculas orgánicas, como:

Potasio (K), este nutriente se une a los fotoasimilados y favorece la movilidad de la zona de fijación hacia la zona de demanda.

 

Niveles de referencia foliar en pimiento

Niveles de referencia foliar en el cultivo de Pimiento Morrón

Los niveles de referencia foliar en el cultivo de pimiento morrón (Capsicum annuum) sirven como punto de partida para evaluar el estado nutricional de las plantas en la producción agrícola.

Para realizar una interpretación de los valores obtenidos en un análisis foliar es importante contar con valores de referencia, esto nos ayudará a modificar o mantener los criterios utilizados en la dosificación de los distintos fertilizantes.

Niveles de referencia foliar en pimiento morrón

Abajo se muestran valores normales para niveles de referencia foliar en el cultivo de Pimiento Morrón (Capsicum annuum) obtenidos por Casas en 1995, los resultados están expresados sobre materia seca.

Cuando los valores del análisis  foliar están dentro de los valores normales de referencia se asume que el cultivo muestra un buen estado nutricional.

En este caso, los valores de referencia foliar son expresados en porcentaje de contenido en materia seca. Cuando envías muestras foliares a un laboratorio para análisis foliar de contenido de nutrientes, están son secadas y posteriormente se determina el contenido del nutriente.

En los análisis foliares expresados en base a materia seca los macronutrientes primarios y secundarios suelen expresarse en porcentaje y los micronutrientes en partes por millón (ppm).

Existen otras formas de evaluar el estado nutricional de las plantas como son el contenido nutricional en savia, o en extracto celular de peciolo. La información aquí presentada no puede ser utilizada como referencia cuando los valores que se busca comparan pertenecen a valores de savia o extracto celular de peciolo.

Niveles de referencia foliar: valores normales

Nutrientes

MinMax
Nitrógeno3.3%5.0%
N-Nítrico0.6%0.8%
Fósforo0.3%0.6%
Potasio4.5%5.5%
Calcio1.5%3.5%
Magnesio0.8%1.3%
Sodio>0.04%
Cloruros>0.75%
Manganeso >90 ppm
Hierro >80 ppm
Cobre>6 ppm
Zinc >40 ppm
Boro>30 ppm

Es aconsejable crear un historial del estado nutricional de nuestras plantas a lo largo del los ciclos productivos con el fin de crear referencias nutricionales in situ, debido a que en ocasiones los valores normales cambian entre especies variedades, climas, etapa de crecimiento y manejo agronómico.Niveles de referencia foliar en pimiento morrón

Si la producción agrícola se localiza en suelos con problemas de salinidad constante, los niveles nutricionales óptimos pueden ser diferentes que en suelos sin esas características. Debido a este tipo de situaciones se recomienda realizar el seguimiento del estado nutricional del cultivo a lo largo de todo el año en las condiciones particulares de la producción.

De esta manera con el cumulo de datos colectados año con año, se pueden realizar niveles de referencia foliar internos, que mejoren nuestra toma de decisiones.

Click para descargar: Niveles de referencia foliar en Pimiento morrón (Capsicum annum) PDF

 

Pudrición apical o blossom end rot ¿Por qué pasa?

La pudrición apical es una fisiopatia provocada por los siguientes factores: baja transpiración de la planta, problemas de absorción y transporte de calcio, y condiciones de estrés salino.

La pudrición apical consiste en el ablandamiento y posterior pudrición de la parte apical de los frutos. Los síntomas pueden ser visible al madurar los frutos o desde el desarrollo de los mismos.

Este problema es provocado por factores ambientales como altas temperaturas, días nublados o días fríos.

Estos alteran la transpiración de la planta y no permiten que el calcio que es un nutriente que depende de la transpiración para ser absorbido y moverse dentro de la planta, no puede llegar a los lugares donde se necesita.

El calcio forma parte de las estructuras que permiten la división celular, también es constituyente de la membrana y pared celular, además es también el calcio el que confiere la estabilidad a la membrana y la permeabilidad selectiva.

Cuando el calcio no llega a los lugares donde mas es necesario, como son las puntas en crecimiento de los órganos de las plantas o meristemos. Es por este mismo motivo que los síntomas serán visibles en las puntas de los frutos y no en la base, por ejemplo.

En muchas ocasiones se dice que la pudrición apical ocurre únicamente por deficiencia real de calcio. Es decir que no existe suficiente calcio en las rizosfera para que la planta absorba las cantidades que necesita.

Sin embargo, la pudrición apical puede presentarse aun con cantidades adecuadas de calcio en la rizosfera. Esto sucede cuando algunos factores ambientales afectan la transpiración de la planta. Estos factores son las altas y bajas temperaturas, estrés hídrico, estrés salino, alta luminosidad, luminosidad interrumpida como en días nublados, entre otros.

Pudrición apical en solanaceaes

Las especies del genero solanaceae son de las más sensibles a esta fisipatia. En inglés es llamado «blossom end rot».

La pudrición apical del pimiento, chile verde, chile jalapeño, berenjena también son frecuentes cuando se presentan los factores ambientales arriba mencionados.

Otros cultivos afectados por la pudrición apical o blossom end rot

Las cucurbitáceas también suelen presentar este problema. Cuando los síntomas son visibles en las hojas, como sucede en las lechugas, espinacas y hortalizas de hoja; se observan necrosadas las puntas de las hojas, lo que se conoce como puntas quemadas o tip burn.

Recomendaciones de manejo

Realizar aplicaciones foliares de calcio complejado con aminoacidos o algun complejo de rápida absorción que permita abastecer el calcio que no llega a los puntos de mayor necesidad (el fruto). Cuando se cuente con invernaderos de alta tecnologia regular la temperatura y ventilación para procurar una transpiración eficiente de la planta

 

 

 

 

 

 

Fosfito de potasio

El fosfito tiene actividad elicitora sobre las plantas, es decir que desencadenan una serie de respuestas que mejoran la respuesta ante ataques de patógenos.

Los fosfitos mejoran la respuesta de las plantas a enfermedades por el proceso conocido como resistencia sistémica adquirida.Los fosfitos son considerados como bionutrientes o bioestimulantes, debido a que estimulan procesos biologicos de las plantas.

En el mercado existen varias fuentes de fosfito, según sea el proceso de su fabricación. La mayoría de fuentes de fosfito en el mercado están formuladas por de la formación de una sal alcalina a partir de ácido fosforoso.

Ficha técnica

Para obtener esta sal (fosfito) suelen utilizarse moléculas con contenido de potasio o calcio, por ello existen fosfito de potasio o fosfito potásico, fosfito de calcio o fosfito cálcico y fosfito de magnesio o fosfito magnésico, todos estos nutrientes son cationes con carga positiva.

Fosfito de potasio (K)

Posee fósforo y potasio en su contenido, el fósforo está en forma de fosfito. El fósforo está en mayor contenido que el de potasio.

Fosfito de calcio (Ca)

Posee fósforo y calcio en su contenido, el fosforo está en forma de fosfito. El fósforo está en mayor contenido que el del calcio.

Fosfito de magnesio (Mg)

Posee fósforo y magnesio en su contenido, el fósforo está en forma de fosfito, el fósforo está en mayor contenido que el magnesio.

Fosfito y fósforo

El fosfito tiene fósforo en su composición, pero estos no poseen iguales efectos sobre la planta. El fósforo es un nutriente esencial para el desarrollo de las plantas superiores, si no existen cantidades adecuadas de fósforo la planta no llevará a cabo correctamente su desarrollo.

El fósforo es absorbido por las plantas en forma de fosfatos inorgánicos, principalmente como anión fosfato monobásico y anión fosfato dibasico, y las plantas los integra a su metabolismo tal como fueron absorbidos.

El fosfito al ser muy parecido a un fosfato es absorbido por el mismo proceso por el cual se absorben los fosfatos, pero al no ser completamente igual que el fosfato este no se integra a metabolismo como un fosfato, el fosfito no es una fuente de fósforo.

Los fosfitos provocan efectos positivos en las plantas, pero no por ser una fuente de fósforo como nutriente, sino más bien, porque los fosfitos provocan un efecto elicitor y mejoran la sanidad de las plantas al provocar el proceso conocido como resistencia sistémica adquirida.

El fosfito posee mayor solubilidad que los fosfatos.

Beneficios agronómicos del fosfito de potasio, de calcio o magnesio

La aplicación de los fosfitos sobre los cultivos provocarían una mejor respuesta de los cultivos a las enfermedades, debido al efecto elicitor, además de la aportación del nutriente que le acompaña, es decir un aporte ya sea de potasio, calcio o magnesio , según sea la fuente de fosfito que se utilice.

 

 

 

Función del hierro en las plantas

El hierro en las plantas forma parte estructural de mas de 100 enzimas, estas enzimas participan en procesos como fotosíntesis, respiración, absorción de iones, transferencia de energía y la síntesis de la clorofila.  Debido a que el hierro participa en la biosintesis de la clorofila, la deficiencia de este nutriente disminuye la cantidad de clorofila en la planta, lo que observamos como plantas amarillentas.

Es común observar deficiencias de hierro en suelos o sustrato con abundante contenido del mismo mineral, esto se debe a que el hierro es un elemento muy reactivo, y reacciona con sulfatos, hidróxidos, bicarbonatos, entre otros componentes del suelo.

Cuando el hierro reacciona se vuelve insoluble y por lo tanto no disponible en la solución del suelo para que las plantas puedan absorberlo.

La función del hierro en las plantas es indispensable e insustituible, es uno de los nutrientes esenciales en las plantas, todas las plantas necesitan hierro para su correcto desarrollo y reproducción.

El hierro pertenece al grupo de nutrientes denominados micronutrientes o microelementos, que son indispensables en el ciclo de vida de cualquier planta o cultivo.

Función del hierro en las plantas

El hierro es cofactor de mas de 100 enzimas que catalizan reacciones bioquímicas únicas e indispensables en los procesos como la fotosíntesis, respiración, metabolismo del nitrógeno, y de los sulfatos, juego un papel muy importante en la transferencia de electrones (reacciones de oxido reducción), procesos que forman parte deFunción del hierro (Fe) en las plantas la fotosíntesis.

El hierro tiene la capacidad de ceder y ganar un electrón, lo que se conoce como capacidad redox. Esta cualidad del hierro lo hace participar en un sin números de procesos en las que las reacciones redox son indispensables. Un ejemplo claro, es que el hierro forma parte de algunas enzimas antioxidantes, que participan en la neutralización de radicales libres de oxigeno para evitar daños celulares.

El hierro forma parte de la ferredoxina, que es una proteína que funciona como aceptor de electrones en la cadena de electrones del fotosistema II, parte fundamental para el proceso de fijación de carbono, conocido como fotosíntesis.

Clorosis férrica

El síntoma característico de una deficiencia de hierro en las plantas es una clorosis o amarillamiento intervenal en las hojas, debido a que una de las principales funciones del hierro en las plantas es participar en la síntesis de la clorofila.

El hierro es un elemento poco móvil dentro de las plantas, los síntomas de deficiencia se presentan en las hojas jóvenes. Siendo las hojas jóvenes las que muestren  los síntomas más marcados, como amarillamiento internerval de las hojas.

La clorosis por deficiencia de hierro se caracteriza por ser un amarillamiento entre nervaduras, mientras que las nervaduras son verdes. En comparación con la clorosis por deficiencia de nitrógeno en la que tanto las nervaduras como la sección internerval se tornan amarillas, mostrándose un amarillamiento generalizado de la hoja.

La deficiencias de zinc (Zn) y manganeso (Mn) son parecidas a las provocadas por el hierro (Fe), ya que todas estas se observan como una clorosis en las hojas mas jóvenes. La mas usual en cambio, es la clorosis férrica, debido a que es un elemento muy reactivo en el suelo.

Deficiencia de hierro en las plantas

La deficiencia puede provocarse por la ausencia real del hierro en el suelo o en lo solución nutritiva, o por condiciones que limitan la disponibilidad del hierro para la planta. Estos factores pueden ser suelos con elevado pH o bien en soluciones nutritivas con pH por encima de 6.5-7.

Deficiencia de hierro en las plantas

La deficiencia de hierro es común en suelos calcáreos, que suelen tener pH mayores a 7.  El hierro suele reaccionar con otros componentes del suelo o sustrato.

Cuando el hierro es aplicado en forma de sulfato de hierro u oxido de fierro, estos reaccionan con los fosfatos o el mismo oxígeno, precipitando al hierro, esto impide su solubilidad en el agua y por lo tanto es imposible que la planta lo absorba por medio de la raíz.

Síntomas de deficiencia de hierro en las plantas

Las plantas con deficiencia de hierro suelen mostrar amarilamiento o clorosis, este amarillamiento comienza en las hojas más jóvenes de la planta, es decir en los puntos del crecimiento del cultivo, debido a la poca movilidad del hierro en la planta.

Cuando los síntomas se presenten en hojas adultas, significa que la deficiencia es de grado alto, y ya ha causado severas repercusiones en el desarrollo de la planta.

Clorosis férrica por deficiencia de hierro

¿Cómo corregir una deficiencia de hierro en las plantas?

Para realizar una corrección eficiente hace falta considerar el tipo de cultivo, de producción, manejo que se le da al cultivo y otras muchas cosas. También debe tomarse en cuenta que la principal función del hierro en las plantas es participando en la síntesis de clorofila.

Hablando de forma general, suelen realizar aplicaciones foliares o al suelo de fuentes de hierro como sulfatos de hierro, o aplicaciones de quelatos  o complejos de hierro (Fe) que suelen ser mucho más efectivos para la corrección que las sales minerales sin quelatar o complejar.

Cuando se busque aplicar el riego a través del sistema de riego o en aplicaciones al suelo, la opción mas eficiente es mediante el uso quelatos de hierro (Fe).

Mientras, que cuando se busque realizar aplicaciones foliares, los complejos de hierro son efectivos.

Actualmente el mercado ofrece quelatos de hierro, esta fuente de hierro impide su precipitación en el suelo, y facilita la disponibilidad del hierro para las plantas, evitando problemas de deficiencia. La función del hierro en las plantas es vital por lo que se deben evitar las deficiencias de este nutriente.

Uno de los quelatos más utilizados gracias al amplio rango de estabilidad en pH es el denominado agente quelante EDDHA, otros agentes quelantes utilizados son HBED, EDTA, IDHA, etc.

Para suelos calcáreos, con pH por arriba de 7 y con alto contenido de caliza, lo mas recomendable es usar quelatos de alta estabilidad como HBED, EDDHA y EDDHSA.

En suelos sin problemas de alcalinidad se recomienda usar DTPA, EDTA y IDHA.

La incorporación de ácidos humidifico y especialmente fúlvicos que mejoran la disponibilidad del hierro en los suelos.

Toxicidad del hierro (Fe)

Cuando se aplica una cantidad mayor de hierro al que las plantas necesitan, puede presentarse un efecto toxico en la planta debido al exceso de hierro. Los síntomas de la toxicidad por hierro en las plantas suele verse como un bronceado de las hojas, que evolucionan a manchas de color café.

Algunos investigadores reportan que niveles de 300 a 400 ppm o mg por kilogramo de suelo provocan fitotoxicidad por hierro en la planta.

Los niveles normales de hierro en la plantas en un análisis foliar están en un rango de 50-250 ppm. Este es un promedio general, el contenido varia según la etapa de desarrollo de la planta.