Establecer una red de profesionales que fomenten el cooperativismo y el intercambio de información para facilitar la difusión de innovaciones entre los distintos participantes del sector.

AGROPRODUCTORES

Evaluamos las condiciones agro-ecológicas de tu zona y recomendamos un manejo integrado para los cultivos.

Archivo de categoría Fertilización Foliar

Funciones del nitrógeno en las plantas

Una de las principales funciones del nitrógeno en las plantas es la de ser constituyente estructural de un sin número de componentes celulares como aminoácidos, péptidos, polipéptidos, proteínas, enzimas, coenzimas, nucleótidos, amidas, clorofila entre muchos otros.

El nitrógeno participa en los siguientes procesos biológicos realizados por la planta: absorción de iones, respiración celular, fotosíntesis, síntesis biológica, división y diferenciación celular, y en general en todo el metabolismo. Esto indica la indispensable necesidad de abastecer con las cantidades adecuadas de nitrógeno a las plantas de una producción agrícola.Funciones del nitrógeno en las plantas

Síntomas de deficiencia de nitrógeno (N) en las plantas

Los síntomas de deficiencia de nitrógeno en las plantas comienzan a observarse en las hojas más viejas de la planta como un amarillamiento generalizado delas hojas y nervaduras. Esto se debe a que es un nutriente móvil, en condiciones de deficiencia la planta transportará el nitrógeno a los puntos de mayor necesidad como las hojas en desarrollo. Este movimiento de nitrógeno provoca que los sistemas se observen en las hojas más viejas de la planta.

Deficiencias de nitrógeno (N)

El nitrógeno participa en la síntesis de clorofila en las plantasLas deficiencias de nitrógeno (N) provocan plantas débiles, de poco crecimiento. El crecimiento radicular disminuye notablemente. La planta se vuelve más susceptible de enfermedades al verse afectado el metabolismo de forma generalizada.

La clorosis provocada por deficiencia de nitrógeno se caracterizan por un amarillamiento generalizado de las hojas viejas. Es decir, se observa nervaduras y entre nervaduras amarillas. En comparación con la clorosis provocada por hierro (Fe), zinc (Zn) y manganeso (Mn) que se presenta como un amarillamiento entre nervaduras de las hojas más jóvenes. En este tipo de clorosis las nervaduras se observan color verde.

En deficiencias avanzadas las hojas comienzan a necrosarse y senescen prematuramente. La planta pierde vigor y el rendimiento cae considerablemente. La deficiencia de nitrógeno (N) trae consigo graves repercusiones en el rendimiento del cultivo en cualquier etapa en la que se presente. Debido a que las funciones del nitrógeno en las plantas son básicamente en todo el metabolismo, deficiencias de este elemento traen graves repercusiones en el desarrollo fisiológico de la planta.

¿Por qué ocurren las deficiencias de nitrógeno (N) en las plantas?

Suelos en los que se ha realizado agricultura intensiva durante muchos años son susceptibles de deficiencias de nitrógeno debido al agotamiento del mismo. En estos casos se recomienda aportar nitrógeno al suelo, en cualquiera de sus formas, amoniacal, nítrica o alguna forma orgánica como en abonos verdes o aporte de estiércol.

La lixiviación en suelos arenosos y pobres en materia orgánica es frecuente. La disponibilidad del nitrógeno será distinta depende de en cuál de sus dos principales fuentes se encuentre, nítrico o amoniacal. El nitrógeno amoniacal es rápidamente asimilable por la planta, pero se gasifica rápidamente con las evidentes perdidas, en cambio el nitrógeno nítrico se libera más lentamente para la planta evitando perdidas por gasificación.

 

Funciones del manganeso (Mn) en las plantas

El manganeso es un micronutriente esencial para el desarrollo de las plantas, participa en varios procesos enzimáticos y de óxido – reducción. Los síntomas de deficiencia se observan en las hojas más jóvenes como una clorosis internerval, síntomas muy similares a los de hierro y zinc.

Algunas de las funciones del manganeso en las plantas  es como activador de una variedad de enzimas. Estas enzimas participan en los procesos de absorción de iones, fotosíntesis, respiración, síntesis de proteínas y control hormonal.

El manganeso forma parte de la enzima llamada manganeso proteínas del fotosistema II, que es indispensable para el proceso de fotosíntesis. Además de ser parte de la enzima superoxido dismutasa (Mn-SOD). LA enzima Mn-SOD participa en la neutralización de radicales libres que se generan dentro de la celula vegetal.

Los valores normales de manganeso (Mn) en una análisis foliar en base a materias seca esta en el rango de 20 a 300 ppm. Plantas con niveles por debajo de 20 ppm suelen mostrar síntomas de deficiencia de este nutriente.

Síntomas de deficiencia de manganeso en las plantas

Síntomas de deficiencia de manganeso (Mn)

Las hojas más jóvenes se tornan amarillas entre las nervaduras, se presenta una clorosis muy similar a las provocadas por deficiencias de hierro o de zinc.

Deficiencias de manganeso (Mn) en plantas

Las deficiencias de Mn en la planta reducen la actividad fotosintética, al alterarse la síntesis de proteínas la planta se vuelve más susceptible de daños por factores bióticos o abióticos. Las funciones del manganeso en las plantas están muy ligadas al proceso fotosintetico, esto provoca que sus deficiencias disminuyen la fijación de dióxido de carbono debido a una mala fotosíntesis.

Es estado energético de la planta se ve afectado debido a alteraciones en la respiración celular. Esta no puede llevarse a cabo adecuadamente debido a las deficiencias de Mn.

¿Por qué ocurren las deficiencias de manganeso (Mn) en las plantas?

Clorosis por deficiencia de manganesoEl alto contenido de materia seca puede dejar bloqueado al manganeso haciéndolo no disponible para la planta. Este tipo de bloqueo se agrava cuando los ambientes son secos y la mineralización de la materia orgánica es lenta.

El pH limita la disponibilidad del manganeso para las plantas, la disponibilidad de este nutriente disminuye a medida que se incrementa el pH. Este nutriente no presenta problemas de absorción a pH de 5.5-6.5. pH debajo de 5 presentan problemas de disponibilidad de manganeso para las plantas.

Cultivos muy demandantes de manganeso(Mn)

Existen algunas plantas que son muy exigentes de este nutriente, entre ellas se encuentra la soya, el manzano, cerezo, limón, naranja, mandarina, toronja, limón, limón persa, avena y betabel.

 

 

Nutrientes esenciales para las plantas

Hoy en día se consideran únicamente 17 elementos como esenciales para el normal desarrollo de las plantas. En ausencia de cualquiera de uno de estos elementos, las plantas no podrían desarrollarse nomalmente.importancia de los nutrientes en las plantas

Los criterios que un elemento debe cumplir para ser considerado un nutriente esencial son los siguientes:

  1. Cuando cualquiera de uno de estos elementos haga falta la planta no podrá desarrollarse normalmente.
  2. Los síntomas de deficiencia solo se corregirán cuando la planta se abastece con el elemento correspondiente, nunca se podrá sustituir con otro elemento.
  3. Las funciones de cada nutriente esencial sobre el metabolismo de las plantas deben ser conocidos.
  4. El nutriente esencial deber tener una acción directa en la nutrición de la planta, lo que significa que no debe actuar a través de variaciones en el substrato.

Estos criterios fueron establecidos por Arnon y Stout en 1939

17 elementos esenciales para las plantas

Funciones de los nutrientes en las plantasDe acuerdo a estos criterios, se consideran nutrientes esenciales las plantas los el carbono (C), hidrogeno (H), oxigeno (O), nitrógeno (N), fósforo (P), potasio (K), azufre (S), calcio (Ca), magnesio (Mg), hierro (Fe), manganeso (Mn), cobre (Cu), zinc (Zn), boro (B), molibdeno (Mo), níquel (Ni) y cloro (Cl).

Estos elementos deben estar disueltos en la solución del suelo para ser absorbidos por las plantas a través de sus raíces y llevar a cabo un desarrollo fisiológico normal.

Clasificación de los nutrientes en las plantas

Los nutrientes esenciales para las plantas pueden clasificarse por la cantidad en las que las plantas lo necesitan.

Macronutrientes

El oxígeno (O), carbono (C), nitrógeno (N), fosforo (P), potasio (K), azufre (S), calcio (Ca) y magnesio (Mg), son considerados macronutrientes de las plantas debido a que su concentración en tejido vegetal seco (análisis foliar) es mayor a 1,000 ppm o lo que es igual 1,000 mg por cada kilogramo.

Micronutrientes

El cloro (Cl), hierro (Fe), manganeso (Mn), cobre (Cu), boro (B), molibdeno (Mo), zinc (Zn), níquel (Ni) son considerados micronutrientes.

Funciones de los nutrientes esenciales en las plantas

Cada nutriente esencial tiene funciones específicas sobre el metabolismo de las plantas, y la función entre ellos varía considerablemente. Todos y cada uno de los nutrientes tienen papel esencial en algún proceso del desarrollo. Ya sea como parte de una enzima, activadores de enzima o como parte de un metabolito.Nutrientes para plantas

Esta diversidad de funciones puede ser clasificada en los tres grupos que abajo se mencionan.

Nutriente estructural

Elementos que forman parte de alguna molécula orgánica sintetizada por la planta como:

Nitrógeno (N) forma parte de aminoácidos, péptidos, polipéptidos, proteínas.

Calcio (Ca) forma parte del pectato que se encuentra en la pared celular.

Magnesio (Mg) forma parte estructural del centro de la molécula de clorofila.

Fósforo (P) forma parte de los ácidos nucleótidos, nucleótidos y moléculas de ATP.

Nutriente constituyente de enzima

Estos nutrientes forman parte de algunas enzimas, y que son esenciales para su funcionamiento como:

Molibdeno (Mo) forma parte de muchas enzimas que son esenciales para el desarrollo de la planta, como la nitrato reductasa.

Hierro (Fe) forma parte de muchas enzimas que participan en la síntesis de clorofila.

Nutriente de transporte y regulación osmótica.

El nutriente forma enlaces débiles con moléculas orgánicas de peso molecular reducido. Esto favorece la movilidad de las moléculas orgánicas, como:

Potasio (K), este nutriente se une a los fotoasimilados y favorece la movilidad de la zona de fijación hacia la zona de demanda.

 

 

Niveles de referencia foliar en el cultivo de Pimiento Morrón

Los niveles de referencia foliar en el cultivo de pimiento morrón (Capsicum annuum) sirven como punto de partida para evaluar el estado nutricional de las plantas en la producción agrícola.

Para realizar una interpretación de los valores obtenidos en un análisis foliar es importante contar con valores de referencia, esto nos ayudará a modificar o mantener los criterios utilizados en la dosificación de los distintos fertilizantes.

Niveles de referencia foliar en pimiento morrón

Abajo se muestran valores normales para niveles de referencia foliar en el cultivo de Pimiento Morrón (Capsicum annuum) obtenidos por Casas en 1995, los resultados están expresados sobre materia seca.

Cuando los valores del análisis  foliar están dentro de los valores normales de referencia se asume que el cultivo muestra un buen estado nutricional.

En este caso, los valores de referencia foliar son expresados en porcentaje de contenido en materia seca. Cuando envías muestras foliares a un laboratorio para análisis foliar de contenido de nutrientes, están son secadas y posteriormente se determina el contenido del nutriente.

En los análisis foliares expresados en base a materia seca los macronutrientes primarios y secundarios suelen expresarse en porcentaje y los micronutrientes en partes por millón (ppm).

Existen otras formas de evaluar el estado nutricional de las plantas como son mediante contenido nutricional en sabia, o en extracto celular de peciolo. La información aquí presentada no puede ser usada de referencia cuando los valores que se busca comparan pertenecen a valores de sabia o extracto celular de peciolo.

Niveles de referencia foliar: valores normales

Nutrientes

Min Max
Nitrógeno 3.3% 5.0%
N-Nítrico 0.6% 0.8%
Fósforo 0.3% 0.6%
Potasio 4.5% 5.5%
Calcio 1.5% 3.5%
Magnesio 0.8% 1.3%
Sodio >0.04%
Cloruros >0.75%
Manganeso  >90ppm
Hierro  >80ppm
Cobre >6 ppm
Zinc  >40ppm
Boro >30 ppm

Es aconsejable crear un historial del estado nutricional de nuestras plantas a lo largo del los ciclos productivos con el fin de crear referencias nutricionales in situ, debido a que en ocasiones los valores normales cambian entre especies variedades, climas, etapa de crecimiento y manejo agronómico.Niveles de referencia foliar en pimiento morrón

Si la producción agrícola se localiza en suelos con problemas de salinidad constante, los niveles nutricionales óptimos pueden ser diferentes que en suelos sin esas características. Debido a este tipo de situaciones se recomienda realizar el seguimiento del estado nutricional del cultivo a lo largo de todo el año en las condiciones particulares de la producción.

De esta manera con el cumulo de datos colectados año con año, se pueden realizar niveles de referencia foliar internos, que mejoren nuestra toma de decisiones.

Click para descargar: Niveles de referencia foliar en Pimiento morrón (Capsicum annum) PDF

 

Pudrición apical o blossom end rot ¿Por qué pasa?

La pudrición apical es una fisiopatia provocada por los siguientes factores: baja transpiración de la planta, problemas de absorción y transporte de calcio, y condiciones de estrés salino.

La pudrición apical consiste en el ablandamiento y posterior pudrición de la parte apical de los frutos. Los síntomas pueden ser visible al madurar los frutos o desde el desarrollo de los mismos.

Este problema es provocado por factores ambientales como altas temperaturas, días nublados o días fríos.

Estos alteran la transpiración de la planta y no permiten que el calcio que es un nutriente que depende de la transpiración para ser absorbido y moverse dentro de la planta, no puede llegar a los lugares donde se necesita.

El calcio forma parte de las estructuras que permiten la división celular, también es constituyente de la membrana y pared celular, además es también el calcio el que confiere la estabilidad a la membrana y la permeabilidad selectiva.

Cuando el calcio no llega a los lugares donde mas es necesario, como son las puntas en crecimiento de los órganos de las plantas o meristemos. Es por este mismo motivo que los síntomas serán visibles en las puntas de los frutos y no en la base, por ejemplo.

En muchas ocasiones se dice que la pudrición apical ocurre únicamente por deficiencia real de calcio. Es decir que no existe suficiente calcio en las rizosfera para que la planta absorba las cantidades que necesita.

Sin embargo, la pudrición apical puede presentarse aun con cantidades adecuadas de calcio en la rizosfera. Esto sucede cuando algunos factores ambientales afectan la transpiración de la planta. Estos factores son las altas y bajas temperaturas, estrés hídrico, estrés salino, alta luminosidad, luminosidad interrumpida como en días nublados, entre otros.

Pudrición apical en solanaceaes

Las especies del genero solanaceae son de las más sensibles a esta fisipatia. En inglés es llamado «blossom end rot».

La pudrición apical del pimiento, chile verde, chile jalapeño, berenjena también son frecuentes cuando se presentan los factores ambientales arriba mencionados.

Otros cultivos afectados por la pudrición apical o blossom end rot

Las cucurbitáceas también suelen presentar este problema. Cuando los síntomas son visibles en las hojas, como sucede en las lechugas, espinacas y hortalizas de hoja; se observan necrosadas las puntas de las hojas, lo que se conoce como puntas quemadas o tip burn.

Recomendaciones de manejo

Realizar aplicaciones foliares de calcio complejado con aminoacidos o algun complejo de rápida absorción que permita abastecer el calcio que no llega a los puntos de mayor necesidad (el fruto). Cuando se cuente con invernaderos de alta tecnologia regular la temperatura y ventilación para procurar una transpiración eficiente de la planta

 

 

 

 

 

 

Fosfito de potasio

El fosfito tiene actividad elicitora sobre las plantas, es decir que desencadenan una serie de respuestas que mejoran la respuesta ante ataques de patógenos.

Los fosfitos mejoran la respuesta de las plantas a enfermedades por el proceso conocido como resistencia sistémica adquirida.Los fosfitos son considerados como bionutrientes o bioestimulantes, debido a que estimulan procesos biologicos de las plantas.

En el mercado existen varias fuentes de fosfito, según sea el proceso de su fabricación. La mayoría de fuentes de fosfito en el mercado están formuladas por de la formación de una sal alcalina a partir de ácido fosforoso.

Ficha técnica

Para obtener esta sal (fosfito) suelen utilizarse moléculas con contenido de potasio o calcio, por ello existen fosfito de potasio o fosfito potásico, fosfito de calcio o fosfito cálcico y fosfito de magnesio o fosfito magnésico, todos estos nutrientes son cationes con carga positiva.

Fosfito de potasio (K)

Posee fósforo y potasio en su contenido, el fósforo está en forma de fosfito. El fósforo está en mayor contenido que el de potasio.

Fosfito de calcio (Ca)

Posee fósforo y calcio en su contenido, el fosforo está en forma de fosfito. El fósforo está en mayor contenido que el del calcio.

Fosfito de magnesio (Mg)

Posee fósforo y magnesio en su contenido, el fósforo está en forma de fosfito, el fósforo está en mayor contenido que el magnesio.

Fosfito y fósforo

El fosfito tiene fósforo en su composición, pero estos no poseen iguales efectos sobre la planta. El fósforo es un nutriente esencial para el desarrollo de las plantas superiores, si no existen cantidades adecuadas de fósforo la planta no llevará a cabo correctamente su desarrollo.

El fósforo es absorbido por las plantas en forma de fosfatos inorgánicos, principalmente como anión fosfato monobásico y anión fosfato dibasico, y las plantas los integra a su metabolismo tal como fueron absorbidos.

El fosfito al ser muy parecido a un fosfato es absorbido por el mismo proceso por el cual se absorben los fosfatos, pero al no ser completamente igual que el fosfato este no se integra a metabolismo como un fosfato, el fosfito no es una fuente de fósforo.

Los fosfitos provocan efectos positivos en las plantas, pero no por ser una fuente de fósforo como nutriente, sino más bien, porque los fosfitos provocan un efecto elicitor y mejoran la sanidad de las plantas al provocar el proceso conocido como resistencia sistémica adquirida.

El fosfito posee mayor solubilidad que los fosfatos.

Beneficios agronómicos del fosfito de potasio, de calcio o magnesio

La aplicación de los fosfitos sobre los cultivos provocarían una mejor respuesta de los cultivos a las enfermedades, debido al efecto elicitor, además de la aportación del nutriente que le acompaña, es decir un aporte ya sea de potasio, calcio o magnesio , según sea la fuente de fosfito que se utilice.

 

 

 

Función del hierro en las plantas

El hierro en las plantas forma parte estructural de mas de 100 enzimas, estas enzimas participan en procesos como fotosíntesis, respiración, absorción de iones, transferencia de energía y la síntesis de la clorofila.  Debido a que el hierro participa en la biosintesis de la clorofila, la deficiencia de este nutriente disminuye la cantidad de clorofila en la planta, lo que observamos como plantas amarillentas.

Es común observar deficiencias de hierro en suelos o sustrato con abundante contenido del mismo mineral, esto se debe a que el hierro es un elemento muy reactivo, y reacciona con sulfatos, hidróxidos, bicarbonatos, entre otros componentes del suelo.

Cuando el hierro reacciona se vuelve insoluble y por lo tanto no disponible en la solución del suelo para que las plantas puedan absorberlo.

La función del hierro en las plantas es indispensable e insustituible, es uno de los nutrientes esenciales en las plantas, todas las plantas necesitan hierro para su correcto desarrollo y reproducción.

El hierro pertenece al grupo de nutrientes denominados micronutrientes o microelementos, que son indispensables en el ciclo de vida de cualquier planta o cultivo.

Función del hierro en las plantas

El hierro es cofactor de mas de 100 enzimas que catalizan reacciones bioquímicas únicas e indispensables en los procesos como la fotosíntesis, respiración, metabolismo del nitrógeno, y de los sulfatos, juego un papel muy importante en la transferencia de electrones (reacciones de oxido reducción), procesos que forman parte deFunción del hierro (Fe) en las plantas la fotosíntesis.

El hierro tiene la capacidad de ceder y ganar un electrón, lo que se conoce como capacidad redox. Esta cualidad del hierro lo hace participar en un sin números de procesos en las que las reacciones redox son indispensables. Un ejemplo claro, es que el hierro forma parte de algunas enzimas antioxidantes, que participan en la neutralización de radicales libres de oxigeno para evitar daños celulares.

El hierro forma parte de la ferredoxina, que es una proteína que funciona como aceptor de electrones en la cadena de electrones del fotosistema II, parte fundamental para el proceso de fijación de carbono, conocido como fotosíntesis.

Clorosis férrica

El síntoma característico de una deficiencia de hierro en las plantas es una clorosis o amarillamiento intervenal en las hojas, debido a que una de las principales funciones del hierro en las plantas es participar en la síntesis de la clorofila.

El hierro es un elemento poco móvil dentro de las plantas, los síntomas de deficiencia se presentan en las hojas jóvenes. Siendo las hojas jóvenes las que muestren  los síntomas más marcados, como amarillamiento internerval de las hojas.

La clorosis por deficiencia de hierro se caracteriza por ser un amarillamiento entre nervaduras, mientras que las nervaduras son verdes. En comparación con la clorosis por deficiencia de nitrógeno en la que tanto las nervaduras como la sección internerval se tornan amarillas, mostrándose un amarillamiento generalizado de la hoja.

La deficiencias de zinc (Zn) y manganeso (Mn) son parecidas a las provocadas por el hierro (Fe), ya que todas estas se observan como una clorosis en las hojas mas jóvenes. La mas usual en cambio, es la clorosis férrica, debido a que es un elemento muy reactivo en el suelo.

 

Deficiencia de hierro en las plantas

La deficiencia puede provocarse por la ausencia real del hierro en el suelo o en lo solución nutritiva, o por condiciones que limitan la disponibilidad del hierro para la planta. Estos factores pueden ser suelos con elevado pH o bien en soluciones nutritivas con pH por encima de 6.5-7.

Deficiencia de hierro en las plantas

La deficiencia de hierro es común en suelos calcáreos, que suelen tener pH mayores a 7.  El hierro suele reaccionar con otros componentes del suelo o sustrato.

Cuando el hierro es aplicado en forma de sulfato de hierro u oxido de fierro, estos reaccionan con los fosfatos o el mismo oxígeno, precipitando al hierro, esto impide su solubilidad en el agua y por lo tanto es imposible que la planta lo absorba por medio de la raíz.

Síntomas de deficiencia de hierro en las plantas

Las plantas con deficiencia de hierro suelen mostrar amarilamiento o clorosis, este amarillamiento comienza en las hojas más jóvenes de la planta, es decir en los puntos del crecimiento del cultivo, debido a la poca movilidad del hierro en la planta.

Cuando los síntomas se presenten en hojas adultas, significa que la deficiencia es de grado alto, y ya ha causado severas repercusiones en el desarrollo de la planta.

Clorosis férrica por deficiencia de hierro

¿Cómo corregir una deficiencia de hierro en las plantas?

Para realizar una corrección eficiente hace falta considerar el tipo de cultivo, de producción, manejo que se le da al cultivo y otras muchas cosas. También debe tomarse en cuenta que la principal función del hierro en las plantas es participando en la síntesis de clorofila.

Hablando de forma general, suelen realizar aplicaciones foliares o al suelo de fuentes de hierro como sulfatos de hierro, o aplicaciones de quelatos  o complejos de hierro (Fe) que suelen ser mucho más efectivos para la corrección que las sales minerales sin quelatar o complejar.

Cuando se busque aplicar el riego a través del sistema de riego o en aplicaciones al suelo, la opción mas eficiente es mediante el uso quelatos de hierro (Fe).

Mientras, que cuando se busque realizar aplicaciones foliares, los complejos de hierro son efectivos.

Actualmente el mercado ofrece quelatos de hierro, esta fuente de hierro impide su precipitación en el suelo, y facilita la disponibilidad del hierro para las plantas, evitando problemas de deficiencia. La función del hierro en las plantas es vital por lo que se deben evitar las deficiencias de este nutriente.

Uno de los quelatos más utilizados gracias al amplio rango de estabilidad en pH es el denominado agente quelante EDDHA, otros agentes quelantes utilizados son HBED, EDTA, IDHA, etc.

Para suelos calcáreos, con pH por arriba de 7 y con alto contenido de caliza, lo mas recomendable es usar quelatos de alta estabilidad como HBED, EDDHA y EDDHSA.

En suelos sin problemas de alcalinidad se recomienda usar DTPA, EDTA y IDHA.

La incorporación de ácidos humidifico y especialmente fúlvicos que mejoran la disponibilidad del hierro en los suelos.

Toxicidad del hierro (Fe)

Cuando se aplica una cantidad mayor de hierro al que las plantas necesitan, puede presentarse un efecto toxico en la planta debido al exceso de hierro. Los síntomas de la toxicidad por hierro en las plantas suele verse como un bronceado de las hojas, que evolucionan a manchas de color café.

Algunos investigadores reportan que niveles de 300 a 400 ppm o mg por kilogramo de suelo provocan fitotoxicidad por hierro en la planta.

Los niveles normales de hierro en la plantas en un análisis foliar están en un rango de 50-250 ppm. Este es un promedio general, el contenido varia según la etapa de desarrollo de la planta.

 

 

 

 

 

 

 

Micronutrientes en las plantas

Son denominados micronutrientes debido a que las plantas los necesita en bajas cantidades, las necesidades son mucho menores que los macronutrientes como el Nitrógeno (N), Fósforo (P) y Potasio (K). Los mircronutrientes son indispensables en el desarrollo de las plantas, su deficiencia provoca deteriores en el desarrollo fisiologicos de las plantas.

Los micronutrientes en las plantas, son elementos que necesitan para realizar sus funciones vitales. Estas funciones dentro de las plantas no pueden ser realizadas por otro elemento, por lo tanto, la ausencia o deficiencia de algún micronutriente provocaría, según el grado de deficiencia, efectos negativos sobre su desarrollo y crecimiento e incluso la muerte de la planta.

Todo elemento de la tabla periódica que sea necesario para el desarrollo de las plantas es denominado nutriente vegetal, estos nutrientes suelen ser aplicados a los cultivos agrícolas intensivos, en forma de fertilizantes. Aquellos elementos que no son necesarios pero su presencia mejora algún proceso de la planta es conocido como elemento benéfico, como es el caso del silicio (Si).

 

¿Cuáles son los micronutrientes en las plantas?

Los micronutrientes son los siguientes elementos: Hierro (Fe), Manganeso (Mn), Zinc (Zn), Cobre (Cu), Boro (B) y Molibdeno (Mo), todos ellos son indispensable para el correcto funcionamiento del metabolismo de las plantas, participan principalmente como constituyentes o activadores de enzimas que catalizan procesos biológicos imprescindibles para la vida de la planta.

Deficiencia de micronutrientes en las plantas

Debido a que la mayoría de micronutrientes en las plantas participan en reacciones enzimaticas, la deficiencias de los micronutrientes afecta reacciones clave para el desarrollo. El hierro (Fe) participa en la síntesis de la clorofila y si el hierro esta deficiente no se lleva a cabo de manera correcta la fotosíntesis, debido a una incorrecta síntesis de la clorofila. El zinc participa en la síntesis de auxinas, la deficiencia de zinc (Zn) provoca una incorrecta formación de auxinas provocando desequilibrios hormonales en la planta, afectando su desarrollo.

Síntomas de deficiencia por micronutrientes

Las hojas suelen ponerse cloróticas (amarilas), plantas raquiticas, pobre crecimiento, enanismo, polen inviable. Los síntomas mas comunes son la clorosis generalizada de las hojas. Existen varios niveles de deficiencia de micronutrientes en las plantas, cuando los síntomas son visibles, en todos los casos se trata de una deficiencia avanzada y que ya esta provocando daños al desarrollo del cultivo. Por este motivo se debe de realizar planes de fertilización preventivos, para evitar las deficiencias de micronutrientes en el cultivo.

Aplicación de micronutrientes en las plantas

En cultivos a cielo abierto, cuando se cuente con un sistema de fertirrigación, es conveniente realizar la aplicación de micronutrientes de manera que se asegura su presencia y disponibilidad para la planta y que su deficiencia no provoque un deterioro del rendimiento que repercutiría también en la rentabilidad de la producción agrícola.

Para cultivos a cielo abierto que no cuenten con sistema de fertirrigación y cuando se desee prevenir o corregir alguna deficiencia el agricultor cuenta con aplicaciones foliares para llegar a su objetivo.

El aporte de micronutientes en las plantas siempre debe considerar los análisis realizados al suelo que determinan la existencia y disponibilidad de cada micronutriente, algunos nutrientes como el Hierro (Fe) puede estar presente en el suelo pero no disponible para la planta. Las condiciones que provocan esto en el Hierro (Fe) son pH altos o muy bajos y alta cantidad de bicarbonatos en suelos, por lo que este nutriente suele agregarse en forma de quelatos al suelo, para facilitar su disponibilidad para la planta. También existen productos comerciales a base de Hierro(Fe) acomplejado con ingredientes orgánicos para aplicaciones foliares, estos ingredientes activos facilitan la absorción del Fierro (Fe) en la planta.

Micronutrientes

Existen productos en el mercado a base de combinaciones que incluyen todos los micronutrientes en forma de quelatos para aplicación al suelo, cuando las aplicaciones se realizan a partir de este tipo de productos las cantidades aplicadas de manera general expresada en partes por millón por cada litro de agua es la siguiente para cada elemento:

Fe 2; Mn 1; Zn 0,4-0,5; B 0,4-0,5; Cu 0,1-0,2; Mo 0,05.

Los productos comerciales suelen venir acompañadas con la dosificación por hectáreas, que van del  kg por hectárea hasta  5 o inclusive más, la decisión final de la cantidad a aportar siempre debe ajustarse a los resultados de análisis de suelo y foliar cuando se cuenten, así como del tipo de cultivo, etapa fenológica, densidad de plantas y genotipo.

 

 

 

 

Nutrición Foliar

Las plantas pueden fertilizarse suplementariamente a través de las hojas mediante aplicaciones de sales solubles en agua, de una manera más rápida que por el método de aplicación al suelo. Los nutrimentos penetran en las hojas a través de los estomas que se encuentran en el haz o envés de las hojas y también a través de espacios submicroscópicos denominados ectodesmos en las hojas y al dilatarse la cutícula de las hojas se producen espacios vacíos que permiten la penetración de nutrientes. Los nutrientes se absorben por las hojas con una velocidad notablemente diferente.

El nitrógeno se destaca por su rapidez de absorción necesitando de 0,5 a 2 horas para que el 50% de lo aplicado penetre en la planta. Los demás elementos requieren tiempos diferentes y se destaca el fósforo por su lenta absorción, requiriendo hasta 10 días para que el 50% sea absorbido. En el Cuadro 1, se detallan tiempos de absorción de algunos nutrimentos importantes.

Una vez que se ha realizado la absorción, las sustancias nutritivas se mueven dentro de la planta utilizando varias vías: a) la corriente de transpiración vía xilema, b) las paredes celulares, c) el floema y otras células vivas y d) los espacios intercelulares. La principal vía de translocación de nutrimentos aplicados al follaje es el floema. El movimiento de célula a célula ocurre a través del protoplasma, por las paredes o espacios intercelulares. El movimiento por el floema se inicia desde la hoja donde se absorben y sintetizan los compuestos orgánicos, hacia los lugares donde se utilizan o almacenan dichos compuestos. En consecuencia, las soluciones aplicadas al follaje no se moverán hacia otras estructuras de la planta hasta tanto no se produzca movimiento de sustancias orgánicas producto de la fotosíntesis

Cuadro 1.

Velocidad de absorción foliar para fertilizantes foliares

Nutriente    Tiempo para que se absorba el 50% del producto

N (urea)             0,5 – 2 h

P                          5- 10 días

K                          10-24 h

Ca                      1-2 días

Mg                  2-5 h S 8 días

Mn                       1-2 días

Zn                          1-2 días

Mo                       10-20 días

Fe                        10-20 días

 

Tomado de Bertsch, 1995.

Fertilización foliar

La fertilización foliar por lo general se realiza para corregir deficiencias de elementos menores. En el caso de macronutrimentos tales como el nitrógeno, fósforo y el potasio, se reconoce que la fertilización foliar solo puede complementar, pero en ningún momento sustituir la fertilización al suelo. Esto se debe a que las dosis a aplicar vía foliar son muy pequeñas en comparación con las dosis aplicadas al suelo para obtener buenos rendimientos. En el Cuadro 2, se detallan algunas tolerancias de concentraciones de fertilizantes foliares.

Aún cuando la fertilización foliar es complementaria, existen condiciones bajo las cuales los fertilizantes foliares permiten obtener buenos resultados agronómicos. Estas situaciones especiales son aquellas que resultan en limitantes para la nutrición mineral de la planta debido a problemas del sistema radical.

La sequía es la primera de ellas y se produce cuando el suministro de agua es deficiente, afectando la alimentación radicular y produciendo trastornos severos en el desarrollo vegetal. Bajo esta situación, la absorción radical de nutrimentos es limitado y será necesario utilizar entre tanto, la vía foliar, mediante la aplicación de fertilizantes foliares.

Contrario a la falta de agua, el exceso o encharcamiento produce poca disponibilidad de oxígeno en el medio radicular inhibiendo de forma inmediata la absorción de agua y nutrimentos por la planta, siendo la fertilización foliar una alternativa para nutrir a la planta, debido a que durante las inundaciones se produce una falta de oxigeno en las raíces, que provoca la muerte de estas, disminuyendo la capacidad de absorción de nutrientes del suelo.

Las aplicaciones de agroquimicos tales como herbicidas, insecticidas, nematicidas o fungicidas producen inicialmente un efecto esterilizante en el suelo, disminuyendo la absorción de nitrógeno, fósforo y potasio principalmente en estados iniciales de desarrollo del cultivo. La aplicación de nutrimentos vía foliar, permitirá restaurar el adecuado balance nutricional en la planta.

En la practica, la fertilización foliar consiste en aportar nutrientes a las plantas asperjando los nutrientes o fertilizantes disueltos en agua sobre las hojas de las plantas. Las plantas son capaces de absorber nutrientes a través de sus hojas e incorporarlos a su metabolismo.

 

Cuadro 2.

Tolerancia de concentración de nutrimentos en aplicaciones foliares

Nutrimento     Fertilizante                                                                         Kg/400 L agua (*)

Nitrógeno       Urea                                                                                         3-5

NH4NO3, (NH4)2HPO4, (NH4)2SO4                                                                 2-3

NH4Cl, NH4H2PO                                                                                         2-3

Fósforo           H3PO4, otros (ver N)                                                             1,5 – 2,5

Potasio           KNO3, K2SO4, KCl                                                                      3-5

Calcio             CaCl2, Ca(NO3) 2                                                                        3-6

Magnesio      MgSO4, Mg(NO3) 2                                                                   3-12

Hierro            FeSO4                                                                                          2-12

Manganeso  MnSO4                                                                                          2-3

Zinc                ZnSO4                                                                                      1,5-2,5

Boro              Sodio borato                                                                              0,25-1

Molibdeno Sodio molibdeno                                                                         0,1-0,15

(*) 400 L, cantidad suficiente para 1 ha de cultivo.

Tomado de Fageria, et al. 1997

 

Los daños causados por heladas son por lo general la pérdida de follaje, las aplicaciones de nitrógeno ayudan a restaurar el área foliar afectada y se ha indicado que el potasio aplicado foliarmente en forma preventiva, puede atenuar los daños por el frío. La salinidad de los suelos es otro factor que afecta la absorción de agua nutrimentos por la planta.

Las sales aumentan la succión osmótica de la humedad del suelo, lo cual aumenta la retención de agua en el suelo, y como consecuencia afecta el movimiento de nutrimentos del suelo a la planta. Por otra parte, altas concentraciones de sodio provocan el bloqueo de la absorción de cationes importantes tales como el calcio, magnesio y potasio.

Por esta razón, el uso de fertilizantes al suelo puede restringirse y la fertilización foliar puede ser una alternativa beneficiosa. Los desbalances entre cationes y aniones en el suelo, pueden provocar deficiencia de alguno de ellos en la planta y la fertilización foliar puede constituirse en una herramienta efectiva para complementar la falta de ese nutrimento.

Un pobre desarrollo radical producto de problemas por toxicidad de aluminio, por compactación de suelo o por un nivel freático muy alto, son otros de los factores que afectan la absorción de nutrimentos por la planta y convierten a la fertilización foliar en un medio importante para complementar la nutrición mineral de los cultivos.

En el mercado existen diversos fertilizantes foliares, cada uno con un perfil de ingredientes activos y nutrientes diferentes, lo que la elección de alguno de ellos dependerá de la necesidad que busquemos atender.

[contact-form to=»roga.armando@gmail.com» subject=»Agroproductores: Newsletter»][contact-field label=»¿Deseas recibir información técnica y noticias relevantes del mundo agro?» type=»select» options=»Si,No»][contact-field label=»Correo electrónico donde recibirá la información » type=»email» required=»1″][contact-field label=»Profesión » type=»select» required=»1″ options=»Estudiante,Asesor Independiente,Grower,Ingeniero Agronomo ,Dueño de producción agrícola ,Prestador de servicios asociados al agro,Otro»][contact-field label=»Cultivo de Interés » type=»text»][contact-field label=»Estado de la República Mexicana » type=»text»][/contact-form]

 

 

 

Diagnostico Nutrimental

El rendimiento de los cultivos está basado inicialmente en la disponibilidad de nutrimentos en el suelo. Los suelos varían enormemente en una serie de propiedades que de una u otra forma, afectan el desarrollo y rendimiento del cultivo.

Propiedades tales como tipo de arcilla, contenido de materia orgánica y de agua y propiedades físicas, etc., afectan la disponibilidad de elementos, mientras que el genoma de la planta, microorganismos, temperatura, agua y pH del suelo afectan la absorción de nutrimentos por la planta. La adecuada nutrición mineral de un cultivo está influenciada por el conocimiento de los requerimientos de la planta y por la cantidad e intensidad de nutrimentos del suelo en donde se tiene el cultivo. Cuando el suelo no puede suplir adecuadamente los nutrimentos para un normal desarrollo de las plantas, se hace necesario su adición en las cantidades y formas apropiadas.

El diagnóstico de las necesidades nutricionales de las plantas es muy similar al diagnósticode los humanos. El médico observa a su paciente, obtiene toda la información necesaria, realiza los exámenes correspondientes y diagnostica el caso. De igual manera el agricultor observa las plantas, recoge información de su manejo y realiza los análisis pertinentes. El éxito de su diagnóstico dependerá de los conocimientos fundamentales de la planta y del
suelo y de la correcta interpretación de los resultados de los análisis.

 

Bibliográfica:

Fertilización foliar: principios y aplicaciones. Memorias. Universidad de Costa Rica.

[contact-form to=»roga.armando@gmail.com» subject=»Agroproductores: Newsletter»][contact-field label=»¿Deseas recibir información técnica y noticias relevantes del mundo agro?» type=»select» required=»1″ options=»Si,No»][contact-field label=»Correo electrónico» type=»email» required=»1″][contact-field label=»Profesión » type=»select» options=»Estudiante ,Asesor Independiente,Grower,Ingeniero Agrónomo,Dueño de producción agrícola,Proveedor de insumos asociados al agro,Otro «][contact-field label=»Cultivo de Interés » type=»text»][contact-field label=»Estado de la República Mexicana » type=»text»][/contact-form]